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Abstract
Laplace operators on metric graphs give rise to Klein–Gordon and wave
operators. Solutions of the Klein–Gordon equation and the wave equation
are studied and finite propagation speed is established. Massive, free quantum
fields are then constructed, whose commutator function is just the Klein–
Gordon kernel. As a consequence of finite propagation speed, Einstein
causality (local commutativity) holds. Comparison is made with an alternative
construction of free fields involving RT-algebras.

PACS numbers: 03.65.Nk, 03.70.+k, 73.21.Hb

1. Introduction

In recent years, the study of quantum systems on networks has received an increasing attention.
They are of interest for possible applications in condensed matter physics. The basic idea is
to study the behavior of a quantum mechanical particle moving on a given network and where
the motion is a free motion away from the nodes of the network. As it turns out, the nodes
serve as beam splitters. The quantum mechanical superposition principle then gives rise to
interesting interference effects and transport properties can be studied.

In addition, interesting mathematical structures appear giving rise to a host of attractive
problems, see, e.g. the articles in [13] and further references given there. In this paper,
we study Klein–Gordon and wave equations on any metric graph and for any given Laplace
operator thereon. We establish existence, uniqueness and finite propagation speed for given
initial data. In addition we construct free quantum fields on arbitrary metric graphs. The
construction of such fields was initiated in [3–5]. The results obtained there were applied
to a study of spin transport and conductance [4, 5, 42], incorporating additional techniques
developed in [4, 6]. The main tool for the construction of these fields was the use of (a simple
version of) RT-algebras [7, 36–38]. Also the construction there was limited to relatively
simple graphs. The construction we present here does not involve RT-algebras and uses only
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standard and familiar methods of second quantization. However, we will be able to relate our
construction to the RT-construction. Spin will not be considered. In order to avoid dealing
with infrared problems, we will construct only massive and not massless quantum fields.

We briefly outline our strategy and our results. As a starting point we choose the Hilbert
space of square integrable functions on the graph as the one-particle space. Next we make
a choice of a self-adjoint Laplacian −� on the graph, which is not necessarily positive.
However, −� will always be bounded below. To define −�, we follow the discussion in [27]
by specifying boundary conditions at the vertices of the graph for the operator given as the
second derivative acting on functions on the graph. Given the Laplacian, a mass m > 0 and
motivated by relativistic quantum theory, we introduce the energy operator

√−� + m2, the
d’Alembert operator (wave operator) � = ∂2

t − � and the Klein–Gordon operator � + m2.1

Unique solutions of the classical Klein–Gordon equation for given Cauchy data are then
obtained by using

sin
√−� + m2t√−� + m2

, (1.1)

which is the Klein–Gordon kernel for m > 0 and the wave kernel for m = 0 and which will
be studied in detail. In particular, finite propagation speed will be established. This notion
makes sense, since on a metric graph the distance between two points is well defined, so the
concepts of two events, that is points in spacetime, being space-like separated makes sense.

Finite propagation speed for solutions of the wave equation on smooth manifolds is well
studied and understood, see e.g. [8, 12, 44, 45]. So far for spaces with singularities, finite
propagation speed has been proved only for the case when the singularities are conical [9].
We recall that finite propagation speed is the earliest time a signal starting at p can arrive at q
is just the distance from p to q (in units where c = 1). So our result is not too surprising. As
it turns out, however, the proof is far from trivial. In fact, we have not been able to prove it for
all Laplacians on graphs, which have internal edges. Moreover, for those Laplacians we have
been able to consider, at least one of the points p and q has to lie on an external edge. For star
graphs, finite propagation speed holds for all Laplacians.

Applying second quantization and a given choice of the Laplacian, we arrive at free
fields which satisfy the Klein–Gordon equation. They are Hermitian as soon as the boundary
conditions defining the Laplacian are chosen to be real, a notion that will be explained below
and which is equivalent to time reversal invariance in quantum mechanics, when the Laplace
operator is taken to be a Schrödinger operator. As usual, the non-Hermitian scalar fields carry
charge. For their construction, we work with two Laplacians, one for the particle and the
other one for the antiparticle. They are such that the boundary conditions defining them are
the complex conjugates of each other, again a notion that will be explained in due time. Since
the commutator is actually given by the kernel (1.1), Einstein causality (local commutativity)
is just another formulation of finite propagation speed. In other words, we show that the
commutator vanishes for space-like separated events. Our proof is different from the standard
proof of finite propagation speed on smooth manifolds. Our methods, however, do not allow
us to prove finite propagation speed and hence Einstein causality in full generality. As a matter
of fact, we miss those space-like separated events, whose space components are both points
in the interior of the graph. Theorem 33 gives the precise conditions and statements.

The paper is organized as follows. In section 2, we summarize several properties of
Laplace operators on metric graphs in a form needed for the next sections. It includes a
detailed discussion of their (improper) eigenfunctions. In fact since these eigenfunctions give
us the integral kernel of the Klein–Gordon kernel, some of their properties are crucial for

1 We work in units where h̄ = c = 1.
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establishing finite propagation speed. In addition to recalling several results from [25, 27,
29, 31], we also establish new and relevant ones. This includes the following. Viewing the
Laplacian as the Hamiltonian of a quantum dynamical system, there is an associated scattering
theory. As it turns out, the on-shell scattering matrix enters the eigenfunctions [27] and
hence also the integral kernel of the Klein–Gordon kernel. The crucial ingredients in proving
finite propagation speed are the analytic properties of the S-matrix. In the single vertex case,
the information we gain on the S-matrix is so detailed that we are able to establish finite
propagation speed even in the case that the Laplacian has bound states.

In section 3, we discuss classical solutions of the Klein–Gordon and the wave equation.
There we also formulate the finite propagation speed result, the proof of which is given
in appendix B. In section 4 we construct spacetime-dependent relativistic free fields, both
Hermitian and non-Hermitian, that satisfy the Klein–Gordon equation and the same boundary
conditions as those for the given Laplacian. There we also show that their commutator
function equals (minus) the Klein–Gordon kernel (1.1). The proof of the orthonormality of
the improper eigenfunctions of the Laplacian is given in appendix A.

2. Laplace operators on metric graphs, their spectral properties and their
eigenfunctions

In this section and for the convenience of the reader, we recall the construction of self-adjoint
Laplace operators on metric graphs in terms of boundary conditions. We also list several of their
properties, in particular their eigenfunctions. They will be needed when we establish finite
propagation speed and when we construct free fields and discuss some of their properties.
We start with some elementary concepts from graph theory. The material is mainly taken
from [25].

2.1. Basic concepts

A finite graph is a 4-tuple G = (V, I, E, ∂), where V is a finite set of vertices, I a finite set
of internal edges and E a finite set of external edges. Elements in I ∪ E are called edges.
∂ is a map, which assigns to each internal edge i ∈ I an ordered pair of (possibly equal)
vertices ∂(i) := {v1, v2} and to each external edge e ∈ E a single vertex v. The vertices
v1 =: ∂−(i) and v2 =: ∂+(i) are called the initial and final vertex of the internal edge i,
respectively. The vertex v = ∂(e) is the initial vertex of the external edge e. If ∂(i) = {v, v},
that is ∂−(i) = ∂+(i), then i is called a tadpole. A graph is compact if E = ∅, otherwise it
is noncompact. Two vertices v and v′ are called adjacent if there is an internal edge i ∈ I
such that v ∈ ∂(i) and v′ ∈ ∂(i). A vertex v and the (internal or external) edge j ∈ I ∪ E are
incident if v ∈ ∂(j).

We do not require the map ∂ to be injective. In particular, any two vertices are allowed to
be adjacent to more than one internal edge and two different external edges may be incident
with the same vertex. If ∂ is injective and ∂−(i) �= ∂+(i) for all i ∈ I, the graph G is called
simple. The degree deg(v) of the vertex v is defined as

deg(v) = |{e ∈ E | ∂(e) = v}| + |{i ∈ I | ∂−(i) = v}| + |{i ∈ I | ∂+(i) = v}|,
that is, it is the number of (internal or external) edges incident with the given vertex v and by
which every tadpole is counted twice. A vertex is called a boundary vertex if it is incident with
at least one external edge. The set of all boundary vertices will be denoted by ∂V such that
|∂V| � |E| holds. The vertices not in ∂V , that is in Vint = V\∂V , are called internal vertices.

The compact graph Gint = (V, I, ∅, ∂|I) will be called the interior of the graph
G = (V, I, E, ∂). It is obtained from G by eliminating all external edges e. Correspondingly,
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if E �= ∅, the noncompact graph Gext = (∂V, ∅, E, ∂|E) is called the exterior of G. We will
view both Gint and Gext as subgraphs of G with Gint ∩ Gext = ∂V .

Throughout the whole work, we will from now on assume that the graph G is connected,
that is, for any v, v′ ∈ V there is an ordered sequence {v1 = v, v2, . . . , vn−1, vn = v′} such
that any two successive vertices in this sequence are adjacent. In particular, this implies that
any vertex of the graph G has nonzero degree, that is for any vertex there is at least one edge
with which it is incident. Gint is connected if G is. For connected G, the graph Gext is connected
if and only if ∂V consists of one vertex only. By definition a single vertex graph is a connected
graph which has no internal edges, only one vertex, and at least one external edge. The star
graph S(v) ⊆ E ∪ I associated with the vertex v ∈ V consists of the set of the edges adjacent
to v and of the vertex v.

We will endow the graph with the following metric structure. Any internal edge i ∈ I
will be associated with an interval Ii = [0, ai] with ai > 0 such that the initial vertex of i
corresponds to x = 0 and the final one to x = ai . The open interval I o

i = (0, ai) will be called
the interior of the edge i. We call the number ai the length of the internal edge i. Any external
edge e ∈ E will be associated with a semi-line Ie = [0, +∞) whose interior is I o

e = (0, +∞).
The set of lengths {ai}i∈I , which will also be treated as an element of R

|I|, will be denoted
by a. A compact or noncompact graph G endowed with a metric structure is called a metric
graph (G, a). For the purpose of a compact notation, we set ae = ∞ for e ∈ E . The metric
structure induces a distance function d(p, q) � 0 with the familiar three properties

• d(p, p) = 0

• d(p, q) = d(q, p)

• d(p, q) � d(p, p′) + d(p′, q)

for all p, p′, q ∈ G. This defines a topology on (G, a), such that d(p, q) is continuous in both
variables. For any e, e′ ∈ E we call pdist(e, e′) = d(∂(e), ∂(e′)) the passage distance from
the external edge Ie to the external edge Ie′ . Thus, pdist(e, e′) = 0 if and only if ∂(e) = ∂(e′)
and pdist(e, e′) � mini∈I ai > 0, whenever ∂(e) �= ∂(e′). d(p, q) � pdist(e, e′) holds for any
p ∈ Ie and q ∈ Ie′ .

On the graph G, there is a natural Lebesgue measure dp. In particular, there is the Hilbert
space L2(G) of square integrable functions on G. We write the scalar product as

〈ψ, φ〉G =
∫
G
ψ(p)φ(p) dp (2.1)

or simply 〈ψ, φ〉, if the context is clear. We write x ∈ Ij = [0, aj ] for the coordinate of the
point p ∈ G if p lies on the edge j ∈ E ∪ I at the point x and we shall say that the pair (j, x)

is the local coordinate for p. For short and whenever convenient, we will also view (j, x) as
a point in G. A complex valued function on the graph, or more precisely on G\V , may be
considered to be a family ψ = {ψj }j∈E∪I of complex valued functions ψj defined on (0, aj ),
so by the convention just made ψ(j, x) = ψj(x). With this notation, the scalar product may
be written as

〈ψ, φ〉 =
∑

j∈E∪I

∫ aj

0
ψj(x)φj (x) dx.

Also we define the derivative ψ ′ = ∂xψ of ψ as

(ψ ′)j (x) = d

dx
ψj (x).
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We also introduce the following set of boundary values of ψ and its derivative as

ψ =
⎛⎝{ψe(0)}e∈E

{ψi(0)}i∈I
{ψi(ai)}i∈I

⎞⎠ , ψ ′ =
⎛⎝ {ψ ′

e(0)}e∈E
{ψ ′

i (0)}i∈I
{−ψ ′

i (ai)}i∈I

⎞⎠ . (2.2)

The ordering of the set E is arbitrary but fixed as is the ordering in I. Given an ordering, in
(2.2) the boundary values on the external edges come first, then the boundary values at the
initial vertices and finally the boundary values at the final vertices. Note also that ψ ′ is defined
in terms of the inward normal derivative, which is intrinsic, that is independent of the special
choice of the orientation on each of the internal edges.

The Laplace operator is defined as

(−�A,Bψ)j (x) = − d2

dx2
ψj(x), j ∈ I ∪ E

with boundary conditions

Aψ + Bψ ′ = 0. (2.3)

A and B are (|E| + 2|I|) × (|E| + 2|I|) matrices. For later reference, we rewrite this condition
as

(A,B)

(
ψ

ψ ′

)
= 0, (2.4)

where (A,B) is the (|E| + 2|I|) × 2(|E| + 2|I|) matrix obtained by putting the matrices A and
B next to each other. So (2.4) is the condition(

ψ

ψ ′

)
∈ Ker(A,B). (2.5)

The operator −�A,B is self-adjoint if and only if the matrix (A,B) has maximal rank and the
matrix AB† is Hermitian. Obviously for any invertible C, the pair (CA,CB) gives the same
boundary conditions since Ker(CA,CB) = Ker(A,B). Moreover, with these conditions,
Ker(A,B) is a maximal isotropic subspaceM(A,B) w.r.t. the canonical Hermitian symplectic
form on C2(|E |+2|I|) and all Hermitian subspaces can be written in this form, see [27]. Moreover
M(A,B) = M(A′, B ′) if and only if A′ = CA,B ′ = CB for some invertible C. For a detailed
discussion concerning the self-adjointness, see [27, 31]. In addition, if the pair (A,B) satisfies
these two conditions, so does the complex conjugate pair (Ā, B̄) giving rise to the Laplacian
�Ā,B̄,a . Let n+(AB†) be the number of positive eigenvalues of AB†, counting multiplicities.
The identity

n+(AB†) = n+(ĀB̄†) (2.6)

is clear. In fact, AB† and ĀB̄† actually have the same spectrum.

Proposition 1. The absolute continuous spectrum of each −�A,B is the interval [0,∞). It has
multiplicity equal to the number of external edges, |E|. The number of negative eigenvalues,
counting multiplicities, is at most n+(AB†)(�|E| + 2|I|). It is equal to n+(AB†) if I = ∅.

Below we shall see that the external edges provide a natural labeling for the multiplicities
of the absolutely continuous spectrum.

Proof. We claim that all Laplacians −�A,B are finite rank perturbations of each other, that
is the difference of two resolvents is always a finite rank operator. To see this, consider the
Hilbert space

H = H(E, I, a) = HE ⊕ HI , HE = ⊕e∈EHe, HI = ⊕i∈IHi , (2.7)

5
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where He = L2([0,∞), dx) for all e ∈ E and Hi = L2([0, ai], dx) for all i ∈ I. Then
L2(G) ∼= H. By Dj with j ∈ E ∪ I denote the set of all ψj ∈ Hj such that ψj(x) and its
derivative ψ ′

j (x) are absolutely continuous and ψj(x) is square integrable. Let D0
j denote the

subset of consisting of elements ψj which satisfy

ψj(0) = ψ ′(0) = 0 when j ∈ E
ψj(0) = ψ ′(0) = ψj(aj ) = ψ ′(aj ) = 0 when j ∈ I.

Let �0 be defined as the second derivative operator, �0ψ = ψ ′′, with domain

D0 = ⊕j∈E∪ID0
j ⊂ H.

Then the deficiency index of −�0 is equal to (|E| + 2|I|, |E| + 2|I|) and every self-adjoint
extension is of the form −�A,B for a suitable boundary condition (A,B). Thus, the claim
follows by general results on self-adjoint extensions; see, e.g. appendix A in [1] and the
references quoted there. The last statement is just theorem 3.7 in [32]. �

We elaborate on the sufficient criterion n+(AB†) = 0 for the absence of negative
eigenvalues. For given boundary condition (A,B), introduce the meromorphic matrix valued
function in k :

S(k;A,B) = −(A + ikB)−1(A − ikB). (2.8)

Observe that S(k;CA,CB) = S(k;A,B) holds for all invertible C, so this function depends
only on the maximal isotropic subspace defined by (A,B), S(k;A,B) = S(k;M(A,B)).

Lemma 2 ([27], theorem 2.1; [31], theorem 3.12, [32]; theorem 3.7). S(k;A,B) exists and
is unitary for all k > 0. Its poles lie on the imaginary axis. There are no poles on the positive
imaginary axis if and only if AB† � 0 and then −�A,B has no negative eigenvalues.

The condition A†B � 0 has the following local formulation, see definition 2.3 in [32], in
terms of vertex quantities and which will be used below. By proposition 4.2 in [31] for given
boundary conditions (A,B), there is an invertible C such that the two matrices CA and CB

have a common block decomposition

CA =
⊕
v∈V

A(v) CB =
⊕
v∈V

B(v) (2.9)

where the pair (A(v), B(v)) gives the boundary conditions at the vertex v. Thus, we obtain

Lemma 3. The following block decomposition holds for all k:

S(k;A,B) =
⊕
v∈V

S(k;A(v), B(v)). (2.10)

In particular, if the boundary conditions (A,B) are such that AB† � 0, then A(v)B(v)† � 0
holds for all vertices v and therefore no S(v; k) = S(k;A(v), B(v)) has poles on the positive
imaginary axis.

With the notation just introduced, there is the following characterization of k-
independence.

Lemma 4. [25] S(k;A,B) is k-independent if and only if AB† = 0 and hence if and only if
A(v)B(v)† = 0 holds for all v ∈ V .

6
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Alternative characterizations of such boundary conditions are given in [31], remark 3.9,
and [25], proposition 2.4. Thus, in the single vertex case, all k-independent S-matrices are of
the form

S = I − 2P (2.11)

with P being an orthogonal projector and then S−1 = S† = S holds. In combination with
theorem 3.7 in [32] −�A,B � 0 follows for such boundary conditions, see also lemma 2.

The boundary conditions actually fix the graph. More precisely, given finite intervals
Ii (i ∈ I) and half-lines Ie (e ∈ E), and functions ψ = {ψj }j∈I∪E on them, generically the
boundary condition (2.3) given by the pair (A,B) uniquely fixes the graph G with a maximal
set of vertices, such that the boundary conditions are local, see [27, 31] for details.

For given l ∈ E , consider the following solution ψl(k) of the stationary Schrödinger
equation at energy k2 > 0,

−�A,Bψl( ; k) = k2ψl( ; k) (2.12)

and of the form

ψl
j (x; k) =

{
e−ikxδjl + S(k)jl eikx for j ∈ E
α(k)jl eikx + β(k)jl e−ikx for j ∈ I.

(2.13)

So intuitively we are looking at what happens to an incoming plane wave e−ikx in channel l
when it moves through the graph. Observe that choosing the Laplacian −�A,B as Schrödinger
operator, quantum mechanically this means that we have free motion away from the vertices.
The vertices in turn act as beam splitters in a way described by the boundary condition (A,B).

The number S(k)jl for j �= l is the transmission amplitude from channel l ∈ E to channel
j ∈ E and S(k)ll is the reflection amplitude in channel l ∈ E . So their absolute value squares
may be interpreted as transmission and reflection probabilities, respectively. The elements
S(k)jl combine to form the scattering matrix

S(k) = SA,B(k).

The ‘interior’ amplitudes α(k)jl = αA,B(k)jl and β(k)jl = βA,B(k)jl are also of interest, since
they describe how an incoming wave moves through a graph before it is scattered into an
outgoing channel.

The condition that ψl( ; k) satisfies the boundary condition leads to the solution⎛⎝S(k)
α(k)
β(k)

⎞⎠ = −Z(k)−1(A − ikB)

⎛⎝I

0
0

⎞⎠ (2.14)

with the matrices

Z(k) = ZA,B(k) = AX(k) + ikBY(k)

X(k) = X(k; a) =
⎛⎝I 0 0

0 I I

0 eika e−ika

⎞⎠
Y (k) = Y (k; a) =

⎛⎝I 0 0
0 I −I

0 −eika e−ika

⎞⎠ .

(2.15)

The diagonal |I| × |I| matrices e±ika are given by

e±ika
jk = e±ikaj δjk for j, k ∈ I.

7
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By construction, Z(k;A,B, a) is entire in k ∈ C. For Neumann boundary conditions the
scattering is trivial, SA=0,B=I(k) = I.

The ψl( ; k) are not in L2(G), but rather improper eigenfunctions. Their main properties
are collected in

Proposition 5. For fixed k > 0, the ψl( ; k) are linearly independent. Any function ψ on
G satisfying −�A,Bψ = k2ψ is a linear combination of these ψl( ; k), provided k2 is not a
discrete eigenvalue of −�A,B .

The proof will be given in a moment. The next proposition will play an important role in
our construction of free quantum fields on the graph G. Set

	> = 	>
A,B = {k > 0 | det ZA,B(k) = 0}. (2.16)

Proposition 6. The improper eigenfunctions ψl( ; k) satisfy the the following orthogonality
relations

〈ψl( ; k), ψl′( ; k′)〉 = 2πδl,l′δ(k − k′) k, k′ ∈ R+\	>. (2.17)

For any k ∈ R+\	>, they span the space associated with the absolutely continuous spectrum
and so the multiplicity of the absolute continuous spectrum equals |E|. In particular, if there
are no discrete eigenvalues, then the ψl( ; k) form a complete set of improper eigenfunctions
of −�A,B in L2(G).

That there are no discrete eigenvalues means that (i) −�A,B � 0, (ii) there are no
positive eigenvalues and (iii) zero is not an eigenvalue. The proof of (2.17) will be given in
appendix A. The remainder follows from the previous proposition. Recalling the notational
convention (2.1), (2.17) reads∫

G
ψl(p; k) ψl′(p; k′) dp = 2πδl,l′δ(k − k′). (2.18)

For the proof, we will need a result concerning the existence of positive (=embedded)
eigenvalues.

Theorem 7 ([27], theorem 3.1; [32], lemma 3.1). −�A,B has a positive eigenvalue E = k2

if and only if k ∈ 	>. The multiplicity n(k) is finite. The set 	> is discrete and has no finite
accumulation point in R+. Any eigenfunction to a positive eigenvalue is identically zero on
any external edge.

For special boundary conditions, one can obtain many positive eigenvalues, just take
for example Dirichlet or Neumann boundary conditions. On the other hand, there are also
nontrivial boundary conditions, that is ones which do not decouple the external edges from
the internal ones, and which give positive eigenvalues, see example 3.2 in [27] and example
4.3 in [30]. Also there are examples with standard boundary conditions (cf example 4.5 in
[31] for the definition), for which there are positive eigenvalues [24].

Corollary 8. The quantities S(k), α(k) and β(k) depend smoothly on k ∈ R+\	>.

Proof. ZA,B(k) is analytic in k ∈ C, so ZA,B(k)−1 is smooth in k ∈ R+\	> and the claim
follows from the representation (2.14). �

8
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For further reference, we denote by ψk,ν for k ∈ 	> and 1 � ν � n(k) an orthonormal
basis of the eigenspace with eigenvalue E = k2 > 0. By what has just been proved, each such
eigenfunction is necessarily of the form

ψ
k,ν
j (x) =

{
0 for j ∈ E
u

k,ν
j eikx + v

k,ν
j e−ikx for j ∈ I.

(2.19)

The orthonormality condition for fixed k is obviously

〈ψk,ν , ψk,ν ′ 〉 = δν,ν ′ =
∑
i∈I

{
u

k,ν
i u

k,ν ′
i ai + v

k,ν
i v

k,ν ′
i ai

+
1

2ik

(
v

k,ν
i u

k,ν ′
i (e2ikai − 1) − u

k,ν
i v

k,ν ′
i (e−2ikai − 1)

)}
, (2.20)

a quadratic form in the u’s and v’s. Thus, we obtain

Corollary 9. The degeneracy n(k) of any discrete eigenvalue E = k2 > 0, that is k ∈ 	>,
satisfies the bound

n(k) � 2|I|. (2.21)

In particular, 	> is empty when G is a single vertex graph.

This result compares with proposition 1. We turn to a proof of proposition 5. Linear
independence is clear due to the different occurrence of incoming waves in the different
ψl( ; k). Assume now that ψ satisfies −�A,Bψ = k2ψ and the boundary conditions (2.3).
The components are necessarily of the form ψj(x) = uj eikx + vj e−ikx for all j ∈ E ∪ I.
Set φ = ψ −∑k∈E vkψ

k( ; k) such that φ also satisfies −�A,Bφ = k2φ and the boundary
conditions. We have to show that φ = 0. Observe that by construction, the components are of
the form

φj (x) =
{
ŝj eikx, j ∈ E
ûj eikx + v̂j e−ikx, j ∈ I

such that φ contains no incoming waves. Therefore, the boundary conditions can be written
in the form

Z(k)

⎛⎝s(k)
u(k)
v(k)

⎞⎠ = 0 (2.22)

with

s(k) = {ŝk}k∈E , u(k) = {ûj }j∈I, v(k) = {v̂j }j∈I
viewed as column vectors. By assumption k /∈ 	>, so ŝk = ûj = v̂j = 0 for all k ∈ E, j ∈ I,
and φ indeed vanishes thus concluding the proof of proposition 5.

Theorem 10 ([27] theorem 3.12; [31] corollary 3.16). The scattering matrix is unitary for all
k > 0,

S(k)† = S(k)−1. (2.23)

In addition, the identity

S(−k) = S(k)−1 (2.24)

between meromorphic matrix valued functions in k is valid.

There are analogous relations for α(k), β(k) in the form

9
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Lemma 11. The following identities for meromorphic matrix valued functions in k ∈ C hold

α(−k) = β(k)S(−k)

β(−k) = α(k)S(−k).
(2.25)

Proof. We will simultaneously also give a new proof of (2.24). Arrange the components
ψl

j ( ; k) as a (|E| + |I|) × |E| matrix ψ( ; k), such that the components of ψl( ; k) form the lth
column. In view of (2.13), the claims (2.24) and (2.25) combined are equivalent to the relation

ψ( ;−k) = ψ( ; k)S(−k) (2.26)

as an identity of meromorphic matrix valued functions. Here, with the meromorphic properties
of S(k), α(k) and β(k), we view each ψl( ; k) as meromorphic in k, that is each component
ψl

j (x; k) is meromorphic in k. So if we define

ψ̂( ; k) = ψ( ;−k)S(k), (2.27)

we have to show that

ψ̂( ; k) = ψ( ; k) (2.28)

holds as an identity between meromorphic matrix valued functions. Now −�A,Bψl( ; k) =
k2ψl( ; k) holds. Moreover the boundary values ψl( ; k) and ψl( ; k)

′
of ψl( ; k), see (2.2), are

also meromorphic. Since the boundary conditions are satisfied for all k > 0, they also hold for
all k away from the poles by the identity theorem for analytic functions. Therefore, they also
hold for all ψl( ;−k) and hence also for all ψ̂ l( ; k). Similarly −�A,Bψl( ; k) = k2ψl( ; k)
implies −�A,Bψl( ;−k) = k2ψl( ;−k) and therefore also −�A,Bψ̂l( ; k) = k2ψ̂ l( ; k).
Again by the identity theorem for meromorphic functions, it suffices to prove (2.28) for
all k ∈ R+\	>. But by proposition 5, each ψ̂ l( ; k) is a linear combination of the ψk( ; k). By
construction,

ψ̂ l
j (x; k) =

{
e−ikxδjl + S(k)jl eikx for j ∈ E
(α(−k)S(k))jl e−ikx + (β(−k)S(k))jl eikx for j ∈ I.

(2.29)

But the eigenfunctions ψl( ; k) and ψ̂ l( ; k) satisfy the same defining properties and so by the
uniqueness of S(k), α(k) and β(k), we infer (2.28). �

Remark 12. Since S(k) is meromorphic in k, its unitarity for positive k extends to complex k
in the form of Hermitian analyticity [11, 40]:

S(k)† = S(k̄)−1. (2.30)

Combined with (2.25), this gives

S(k)† = S(−k̄). (2.31)

In particular, S(k) is a Hermitian matrix when k is purely imaginary. Since each ψl( ;−k)
satisfies −�A,Bψl( ;−k) = k2ψl( ;−k) and the boundary conditions (A,B), it has to be a
linear combination of the ψl′( ; k) and so (2.26) just provides the explicit form.

We consider the behavior under complex conjugation. Observe that if (A,B) has maximal
rank and AB† is Hermitian, then the complex conjugate pair (Ā, B̄) is also of maximal rank
and ĀB̄† is Hermitian. So (Ā, B̄) also gives rise to a Laplacian. The following lemma is
trivial.

Lemma 13 [27]. If ψ satisfies the boundary condition (A,B), then the complex conjugate
wavefunction ψ̄ satisfies the boundary condition (Ā, B̄).

10
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In particular, if ψ is in the domain of �A,B , then ψ̄ is in the domain of �Ā,B̄,a and

−�A,Bψ = −�Ā,B̄,aψ̄ (2.32)

holds.

This gives the following nice observation, whose proof we omit. Recall relation (2.6) in
connection with proposition 1.

Corollary 14. The spectra of the two Laplacians �A,B and �Ā,B̄,a agree. Moreover, if ψ is
an (improper) eigenfunction of −�A,B , then ψ̄ is an (improper) eigenfunction of �Ā,B̄,a for
the same eigenvalue.

Let T denote transposition of a matrix.

Lemma 15 ([30] theorem 2.2). The following identities between meromorphic matrix valued
functions hold for arbitrary boundary conditions (A,B):

SĀ,B̄ (k) = SA,B(k)T

αĀ,B̄ (k) = βA,B(k̄) SA,B(k)T

βĀ,B̄ (k) = αA,B(k̄) SA,B(k)T

(2.33)

or equivalently

ψĀ,B̄( ; k) = ψA,B( ; k̄)SA,B(k)T . (2.34)

Proof. We give an alternative proof along the lines used in the proof of lemma 11. Indeed,
with the notation used there, define for complex k

ψ̌( ; k) = ψA,B( ; k̄) SA,B(k̄)−1, (2.35)

where we indicate the dependence on the boundary conditions. The aim is to show

ψ̌( ; k) = ψĀ,B̄( ; k), (2.36)

from which (2.33) and (2.34) follow. Again by the identity theorem for meromorphic functions,
it suffices to prove this relation for k > 0, for which k2 is not a discrete eigenvalue. For such
k by unitarity SA,B(k̄)−1 = SA,B(k)T and hence for all k ∈ C, again by the identity theorem.
By lemma 13 each ψ̌ l( ; k) is an improper eigenfunction of −�(Ā, B̄, a) with eigenvalue k2

and hence must be a linear combination of the ψk
Ā,B̄

( ; k). By construction, the components of

ψ̌ l( ; k), k > 0 are of the form

ψ̌ l
j (x; k) =

{
e−ikxδjl + SA,B(k)−1

j l eikx for j ∈ E

(αA,B(k)SA,B(k)−1)jl eikx + (βA,B(k)SA,B(k)−1)jl e−ikx for j ∈ I

=
{

e−ikxδjl + SA,B(k)lj eikx for j ∈ E
(αA,B(k)SA,B(k)T )jl eikx + (βA,B(k)SA,B(k)T )jl e−ikx for j ∈ I.

(2.37)

But ψl
Ā,B̄

( ; k) and ψ̌ l( ; k) satisfy the same defining properties and so by the uniqueness of
SĀ,B̄ (k), αĀ,B̄ (k) and βĀ,B̄ (k), we infer (2.36). �

By corollary 14, we know that ψl( ; k) = ψl
A,B( ; k) are eigenfunctions of −�Ā,B̄,a with

eigenvalue k2. Relation (2.34) shows us that they span the eigenspace of −�Ā,B̄ for that
eigenvalue as does ψl

Ā,B
( ; k). We shall make use of this observation when we construct

massive, free charged fields in section 4.3.

11
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By definition the boundary conditions given by the pair (A,B) are real if an invertible
C exists such that the pair (A′, B ′) = (CA,CB) consists of real matrices A′ and B ′. An
equivalent condition is that there exists an invertible C ′ with C ′A = Ā and C ′B = B̄, see
[30]. As a direct consequence of lemmas 11 and 15, we obtain the following two corollaries

Corollary 16. For arbitrary boundary conditions (A,B), the relations

αA,B(k̄) = αĀ,B̄ (−k), βA,B(k̄) = βĀ,B̄ (−k) (2.38)

hold as identities between matrix-valued meromorphic functions in k ∈ C.

Corollary 17. If the boundary conditions (A,B) are real, then the relations

S(k̄) = S(−k), β(k̄) = α(k)S(−k), α(k̄) = β(k)S(−k) (2.39)

and hence

α(k̄) = α(−k), β(k̄) = β(−k) (2.40)

are valid as identities between matrix valued meromorphic functions in k ∈ C.

As a consequence of lemma 13, we directly obtain

Corollary 18. For real boundary conditions (A,B) ψ̄ is an eigenfunction of −�A,B whenever
ψ is. Therefore, for a given eigenvalue, the associated eigenspace is spanned by real
eigenfunctions.

So if for real boundary conditions we choose the eigenfunctions ψk,ν to be real, then in
the notation of (2.19) the relations

u
k,ν
j = v

k,ν
j , k ∈ 	> (2.41)

are valid. Similarly, we can rewrite (2.39) as

Corollary 19. If the boundary conditions are real, then the relation

ψ( ; k̄) = ψ( ; k)S(−k) (2.42)

is valid.

Also (2.30) and the first relation in (2.39) gives

Lemma 20 (see [27] corollary 3.2; [30] theorem 2.2). If the boundary conditions (A,B) are
real, then S(k) is a symmetric matrix and so for k purely imaginary the matrix S(k) is real due
to (2.39).

Remark 21. For arbitrary boundary conditions (A,B), the equivalent exponentiated form of
(2.32) is

ei�A,B t ψ = e−i�Ā,B̄,a t ψ. (2.43)

If the boundary conditions (A,B) are real and hence �A,B = �Ā,B̄,a holds, then (2.43) is
just the statement that time reversal invariance holds. In the single vertex case, this invariance
combined with the hermiticity condition on the field (see below) has been used in [5] to prove
that S(k) is then a symmetric matrix.

Combined with (2.11) we obtain

Corollary 22. For a single vertex graph all k-independent S-matrices resulting from real
boundary conditions are of the form (2.11) where P is a real, symmetric and idempotent
matrix, P 2 = P .

12
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2.2. Negative eigenvalues of the Laplace operator and their eigenfunctions

The operator −�A,B may have negative eigenvalues. We introduce the sets

	� = 	<
A,B = {k = iκ | κ � 0, k2 = −κ2 is an eigenvalue of − �A,B}

	< = 	<
A,B = {k = iκ | κ > 0, k2 = −κ2 is an eigenvalue of − �A,B} (2.44)

such that trivially 	< ⊆ 	� and let 	 = 	� ∪	>, the set of all discrete eigenvalues. We will
discuss zero as a possible eigenvalue separately in the next subsection 2.3. Since all Laplace
operators −�A,B for different (A,B) are finite rank perturbations of each other and since the
ones with Dirichlet and/or Neumann boundary conditions are non-negative, 	< is a finite set
and the multiplicity of each eigenvalue is finite. If k2 = −κ2 < 0 is such an eigenvalue with
multiplicity n(k), there is a finite, orthonormal basis of eigenfunctions ψk,ν, 1 � ν � n(k).
Written in local coordinates, they are all necessarily of the form

ψ
k,ν
j (x) =

{
s

k,ν
j eikx for j ∈ E

u
k,ν
j eikx + v

k,ν
j e−ikx for j ∈ I.

(2.45)

The orthonormality condition for fixed k ∈ 	< is easily calculated to be

δν,ν ′ = 〈ψk,ν , ψk,ν ′ 〉 = − 1

2ik

∑
e∈E

s
k,ν
j s

k,ν ′
j +

∑
i∈I

{
u

k,ν
i u

k,ν ′
i ai + v

k,ν
i v

k,ν ′
i ai

+
1

2ik

(
v

k,ν
i u

k,ν ′
i (e2ikai − 1) − u

k,ν
i v

k,ν ′
i (e−2ikai − 1)

)}
. (2.46)

In analogy to corollary 9, we obtain

Corollary 23. The degeneracy n(k) of any discrete eigenvalue E = k2 (k ∈ 	<) satisfies the
bound

n(k) � |E| + 2|I|. (2.47)

After a short calculation, the boundary condition can be brought into the form, compare
(2.22),

Z(k = iκ)

⎛⎝sk=iκ,ν

uk=iκ,ν

vk=iκ,ν

⎞⎠ = 0. (2.48)

In case the boundary conditions are real, the ψk,ν may be chosen to be real, that is the
coefficients sk,ν

e , u
k,ν
j and v

k,ν
j are all real.

Recall that there is a canonical Lebesgue measure dp on G. δ(p, q) is the Dirac δ-function
on G with the defining property∫

G
δ(p, q)f (q) dq = f (p).

Remark 24. The arguments may also be reversed to show that 	 equals the set of zeros of
det Z(k) in the set {k ∈ C | Re k = 0, Im k > 0} ∪ R+ and that the k2 with k ∈ 	 form exactly
the discrete spectrum. As a result there is a completeness relation written as

1

2π

∑
l

∫ ∞

0
dk ψl(p; k)ψl(q; k) +

∑
k∈	,1�ν�n(k)

ψk,ν(p)ψk,ν(q) = δ(p, q) p, q ∈ G.

(2.49)

The normalization factor 1/2π is due to (2.18).

13
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2.2.1. Bound states and poles of the S-matrix in the single vertex case. In the single vertex
case, one can actually say much more about bound states. In fact, we will see that they
are completely encoded in the S-matrix. Thus, the negative eigenvalues are the poles of the
scattering matrix and the corresponding eigenfunctions may be obtained from the residues of
the poles. To explain this in detail, let Gn denote the single vertex graph with n = |E| half-lines
meeting at the single vertex v. We will label these half-lines from 1 to n. The scattering matrix
S(k) now simply equals S(k) = −(A + ikB)−1(A − ikB). As shown in [31], see relation
(3.23) there, the S(k) for different k all commute and as a consequence there is a common
spectral decomposition [26],

S(k) =
∑
κ∈I

Sκ(k) =
∑
κ∈I

k + iκ

k − iκ
P κ = P 0 − P ∞ +

∑
κ∈I0

k + iκ

k − iκ
P κ. (2.50)

I = I(A,B) is a finite set of different real numbers, including possibly the values κ = 0,∞.
Also I0 is the subset, where these elements have been omitted. The Ps define a decomposition
of unity of pairwise orthogonal projectors∑

κ∈I

P κ = In×n, (P κ)† = P κ, P κP κ ′ = P κδκκ ′ . (2.51)

Thus P κ is the orthogonal projection onto the eigenspace of S(k) with eigenvalue (k +
iκ)/(k − iκ) (equal to 1 for κ = 0 and equal to −1 for κ = ∞). The multiplicities are
0 � nS(iκ) = trP κ .

S(k) is k-independent if and only if I = {0,∞}, that is I0 = ∅. Then P in (2.11) is just
P ∞ and P 0 = I − P ∞. Moreover S(k) is invertible if and only if k /∈ iI0 ∪ −iI0.

Lemma 25. If the boundary conditions (A,B) are real, then the P κ are real, symmetric
matrices.

Proof. Due to the representation

P κ = lim
τ→κ

τ − κ

τ + κ
S(iτ), κ �= 0,∞,

each P κ with κ ∈ I0 is real and symmetric by lemma 20. So by the same lemma and with
τ > maxκ∈I κ,

P 0 − P ∞ = S(iτ) −
∑
κ∈I0

τ + κ

τ − κ
P κ

P 0 + P ∞ = In×n −
∑
κ∈I0

P κ

are real and symmetric and so are both P 0 and P ∞. �

Our next aim is to determine the eigenfunctions ψk,ν out of these data. We will conform
to our previous notation and show 	 = 	< = {iκ | 0 < κ ∈ I0}, such that the negative
eigenvalues of −�A,B are of the form −κ2. Given κ , there are orthonormal unit vectors
s iκ,ν (1 � ν � n(iκ)) in C

n which span the eigenspace of P κ for the eigenvalue 1 (= Ran P κ),

P κ ′
s iκ,ν = δκ ′,κ s

iκ,ν (2.52)

and hence

S(k)s iκ,ν = k + iκ

k − iκ
s iκ,ν . (2.53)

14



J. Phys. A: Math. Theor. 42 (2009) 495401 R Schrader

Observe that the entire set of the s iκ,ν is automatically orthonormal by (2.51) and (2.52)
n∑

j=1

s
iκ,ν
j s

iκ ′,ν ′
j = δκ,κ ′δν,ν ′ . (2.54)

When the boundary conditions and hence also the projectors are real by the previous lemma,
these eigenvectors may then be chosen to be real. We define the family of functions ψ iκ,ν in
L2(Gn) in terms of its components as

ψ
iκ,ν
j (x) = s

iκ,ν
j

√
2κ e−κx 1 � j � n, 1 � ν � n(iκ). (2.55)

The orthonormality of this set follows from the orthonormality (2.54) of the s iκ,ν . The next
result shows how the bound states are encoded in the scattering matrix.

Proposition 26. Let G be a single vertex graph. For 0 < κ < ∞ appearing in the spectral
decomposition (2.50) the ψ iκ,ν as defined by (2.55) are normalized eigenfunctions of −�A,B

with eigenvalue −κ2 satisfying the boundary conditions. Conversely, if −κ2 with 0 < κ < ∞
is an eigenvalue, then S(k) has a pole at k = iκ . In particular, the multiplicity of each such
eigenvalue is nS(iκ) and the number nb of bound states (counting multiplicities) equals

nb =
∑

0<κ∈I0

nS(iκ).

By this lemma, there are at most n = |E| bound states when G is a single vertex graph. It
is easy to construct examples where this upper bound actually is also obtained.

Proof. As for the boundary values of ψ iκ,ν and its derivative we have

ψ iκ,ν =
√

2κs iκ,ν, ψ iκ,ν ′ = −κ
√

2κs iκ,ν = −κψ iκ,ν

and we have to show that

Aψ iκ,ν + Bψ iκ,ν ′ =
√

2κ(A − κB)s iκ,ν = 0.

As established in [29], see also [31] proposition 3.7, we may instead of (A,B) equivalently
use the pair (A(k), B(k)), where

A(k) = −1

2
(S(k) − In×n), B(k) = 1

2ik
(S(k) + In×n)

and where k > 0 is arbitrary. Actually by the proof given there, k may be chosen arbitrary in
the domain of analyticity of S(k) and for which S(k) is invertible. By

det S(k) = (−1)nS(i∞)
∏
κ∈I0

(
k + iκ

k − iκ

)nS(iκ)

, (2.56)

this is the case if k is chosen outside the set iI0 ∪ −iI0. In a moment we shall have the
opportunity to make use of this observation. A trivial calculation using (2.53) gives

(A(k) − κB(k))sκ,ν = 1

2

((
−1 − κ

ik

)
S(k) +

(
1 − κ

ik

)
In×n

)
sκ,ν

= 1

2

((
−1 − κ

ik

) k + iκ

k − iκ
+
(

1 − κ

ik

))
sκ,ν = 0.

As for the converse let ψ �= 0 be an eigenfunction of −�A,Bψ with eigenvalue −κ2
0 with

κ0 > 0, −�A,Bψ = −κ2
0 ψ . Then, ψ is necessarily of the form ψj(x) = cj exp −κ0x. Let

0 �= c ∈ C
n denote the column vector with components cj. Since ψ satisfies the boundary

conditions, the relation

(A − κ0B)c = 0 (2.57)
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holds or equivalently by the above remarks

(A(k) − κ0B(k))c = 0, k /∈ iI ∪ −iI,

which when written out gives

S(k)c = k + iκ0

k − iκ0
c. (2.58)

Thus, S(k) has a pole at k = iκ0 ∈ iI and P κ0c = c. For a single vertex graph, Z(k) as defined
by (2.15) equals A + ikB. Observe that we used only (2.57) to establish (2.58). Therefore,
the condition det(A + ik0B) = 0 for k0 �= 0, cf remark 24, is equivalent to k0 being a pole for
S(k). Moreover, the discrete spectrum with its multiplicities is given in terms of the scattering
matrix as

	 = {iκ | 0 < κ ∈ I0}, n(iκ) = nS(iκ), 0 < κ ∈ I0. (2.59)
�

As a further, related consequence of this proposition, the relation

P κ
jl =

∑
1�ν�n(iκ)

s
iκ,ν
j s

iκ,ν
l (2.60)

holds for the matrix elements of P κ .
As for the role of P0 and P ∞, we have

Lemma 27. The relations

ker A = Ran P 0, ker B = Ran P ∞ (2.61)

hold, so in particular AP 0 = 0, BP ∞ = 0.

Proof. By our previous discussion ker A = ker A(k) = ker(S(k)− I) and ker B = ker B(k) =
ker(S(k) + I) for k /∈ iI ∪ −iI. �

The known relation ker A ⊥ ker B = 0, see lemma 3.4 in [31], is of course compatible with
this result. Consider any piecewise constant function ψ , that is a function which is constant
on each edge. Then ψ is completely determined by its boundary values ψ . Moreover, if
ψ ∈ ker A, then ψ satisfies the boundary condition (2.3).

2.3. Zero as an eigenvalue

In this subsection, we establish necessary and sufficient conditions for −�A,B to have 0 as
an eigenvalue. Let ψ �= 0 be such a square integrable eigenfunction, −�A,Bψ = 0. Then
necessarily ψe(x) = 0 for all e ∈ E while ψi(x) = γi + δix for i ∈ I and some γi, δi ∈ C, not
all vanishing. So with γ = {γi}i∈I, δ = {γi}i∈I ∈ C

|I|, viewed as column vectors and with
the notation (2.2):

ψ =
⎛⎝ 0

γ

γ + Taδ

⎞⎠ = Ua

(
γ

δ

)
, ψ ′ =

⎛⎝ 0
δ

−δ

⎞⎠ = V

(
γ

δ

)
with the diagonal matrix Ta = diag{ai}i∈I and

Ua =
⎛⎝0 0

I 0
I Ta

⎞⎠ , V =
⎛⎝0 0

0 I

0 −I

⎞⎠ .
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So the boundary condition (2.4) takes the form

(A,B)

(
ψ

ψ ′

)
= (AUa, BV )

(
γ

δ

)
= 0. (2.62)

Using the condition (2.5) and viewing(
Ua

V

)
as a 2(|E| + 2|I|) × 2|I| matrix, we arrive at

Proposition 28. The following relation is valid:

dim Ker �A,B = dim

(
Ker(A,B) ∩ Ran

(
Ua

V

))
= dim Ker(AUa, BV ). (2.63)

Observe that dim Ker(A,B) = |E| + 2|I| while dim Ran
(

Ua

V

) = 2|I| since Ker
(

Ua

V

) = 0.
Generically subspaces of these dimensions have trivial intersection in a space of dimension
equal to 2(|E| + 2|I|), that is they are transversal. This property remains valid even if one
space, namely Ker(A,B), is required to be maximal isotropic. As a consequence, for generic
boundary conditions (A,B), we conclude that −�A,B does not have zero as an eigenvalue.

Example 29. Consider the interval [0, a] with Robin boundary conditions at both ends

cos τ0ψ(0) + sin τ0ψ
′(0) = 0, cos τ1ψ(a) − sin τ1ψ

′(a) = 0. (2.64)

Then,

(AUa, BV ) =
(

cos τ0 sin τ0

cos τ1 a cos τ1 − sin τ1

)
has non-trivial kernel if and only if a − tan τ0 − tan τ1 = 0 or cos τ0 = cos τ1 = 0 (Neumann
boundary conditions).

2.4. Walk representation of the amplitudes S(k), α(k) and β(k)

In this section, we will provide an expansion of the amplitudes S(k), α(k) and β(k) in terms of
walks on the graph. We will use this result to give the proof of theorem 33 in appendix B. For
the scattering matrix S(k), such an expansion was already established in [31]. The extension
to α(k) and β(k) is similar and goes as follows. For the convenience of the reader we recall
those parts of the notion of a walk as introduced in [31] and extended in [32] and which are
relevant for our purpose. A nontrivial walk w on the graph G from j ′ ∈ E ∪ I to j ∈ E ∪ I is
an ordered sequence formed out of edges and vertices

{j, v0, j1, v1, . . . , jn, vn, j
′} (2.65)

such that

(i) j1, . . . , jn ∈ I;
(ii) the vertices v0 ∈ V and vn ∈ V satisfy v0 ∈ ∂(j), v0 ∈ ∂(j1), vn ∈ ∂(j ′) and vn ∈ ∂(jn);

(iii) for any k ∈ {1, . . . , n − 1}, the vertex vk ∈ V satisfies vk ∈ ∂(jk) and vk ∈ ∂(jk+1);
(iv) vk = vk+1 for some k ∈ {0, . . . , n − 1} if and only if jk is a tadpole.

When j, j ′ ∈ E , this definition is equivalent to that given in [31].
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The number n is the combinatorial length |w|comb and the number

|w| =
n∑

k=1

ajk
> 0

is the metric length of the walk w.
A trivial walk on the graph G from j ′ ∈ E ∪ I to j ∈ E ∪ I is a triple {j, v, j ′} such

that v ∈ ∂(j) and v ∈ ∂(j ′). Otherwise the walk is called nontrivial. In particular, if
∂(j) = {v0, v1}, then {j, v0, j} and {j, v1, j} are trivial walks, whereas {j, v0, j, v1, j} and
{j, v1, j, v0, j} are nontrivial walks of combinatorial length 1 and of metric length aj. Both
the combinatorial and metric length of a trivial walk are zero.

We will say that the walk (2.65) enters the final edge j through the final vertex v0 = v0(w)

and leaves the initial edge j ′ through the initial vertex vn = vn(w). A trivial walk {j, v, j ′}
enters j and leaves j ′ through the same vertex v. Assume that the edges j, j ′ ∈ E ∪ I are not
tadpoles. The following distance relation holds for a point p in G with local coordinate (j, x)

and the final and initial vertices of a walk of the form (2.65)

d(p, v0(w)) :=
{
x if p ∼= (j, x), v0(w) = ∂−(j),

aj − x if p ∼= (j, x), v0(w) = ∂+(j),
(2.66)

and similarly

d(q, vn(w)) :=
{
x ′ if q ∼= (j ′, x ′), vn(w) = ∂−(j ′),
aj ′ − x ′ if q ∼= (j ′, x ′), vn(w) = ∂+(j ′).

(2.67)

The score n(w) of a walk w is the set {ni(w)}i∈I with ni(w) � 0 being the number of times
the walk w traverses the internal edge i ∈ I such that

|w| =
∑
i∈I

aini(w)

holds. Let Wj,j ′ , j, j ′ ∈ E ∪ I be the (infinite if I �= ∅) set of all walks w on G from j ′ to j .
Obviously we have the

Lemma 30. If p ∼= (j, x) and q ∼= (j ′, x ′) and if the edges j, j ′ are not tadpoles, then the
distance between p and q satisfies

d(p, q) � inf
w∈Wj,j ′

(d(p, v0(w)) + |w| + d(q, vn(w))) (2.68)

with equality if j �= j ′.

Observe that with this notation d(p, v0(w)) � aj and d(q, vn(w)) � aj ′ .
Using relation (3.33) in [31], relation (2.14) may be rewritten as⎛⎝ S(k)

α(k)
e−ikaβ(k)

⎞⎠ = (I − S(k)T (k))−1S(k)

⎛⎝ In×n

0m×n

0m×n

⎞⎠ . (2.69)

For the sake of clarity, we have indicated the type of matrices with n = |E|,m = |I|. Also
S(k) = S(k;A,B), see (2.8), and

T (k) = T (k, a) =
⎛⎝0 0 0

0 0 eika

0 eika 0

⎞⎠ .

So S(k) alone is obtained as

S(k) = (In×n 0n×m 0n×m)(I − S(k)T (k))−1S(k)

⎛⎝ In×n

0m×n

0m×n

⎞⎠ . (2.70)
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Alternative ways of obtaining S(k) out of the single vertex scattering matrices S(k) and the
metric structure of G are given in [17, 22, 23, 30, 42]. Analogous relations for the amplitudes
α(k) and β(k) are

α(k) = (0m×n 1m×m 0m×m )(I − S(k)T (k))−1S(k)

⎛⎝ In×n

0m×n

0m×n

⎞⎠
β(k) = (0m×n 0m×m eika )(I − S(k)T (k))−1S(k)

⎛⎝ In×n

0m×n

0m×n

⎞⎠ .

(2.71)

As a consequence of relation (2.70), the expansion

S(k)ee′ =
∑

w∈Wee′

S(w; k)ee′ eik|w| (2.72)

with

S(w; k)ee′ =
k∏

l=1

S(vl; k)il il−1 (2.73)

is valid. S(v; k) is the single vertex scattering matrix obtained from the boundary conditions
at the vertex v. Also this matrix is indexed by those edges having v in their boundary, that is
by the edges in the star graph S(v). For this we have to assume that there are no tadpoles,
that is edges whose endpoints are the same vertex. For the details on the expansion (2.72), see
[31]. But then by the same arguments, we also obtain similar expansions for the amplitudes
α(k) and β(k). Indeed, for i ∈ I and e ∈ E , let W±

ie be the set of walks in Wie such that
v0(w) = ∂±(i). W−

ie and W+
ie are disjoint and Wie = W−

ie ∪ W+
ie. Then (2.71) implies

α(k)ie =
∑

w∈W−
ie

S(w; k)ie eik|w|

β(k)ie =
∑

w∈W+
ie

S(w; k)ie eik(ai+|w|)
(2.74)

with otherwise the same notation as in (2.73).

3. Classical solutions of the Klein–Gordon and the wave equation

3.1. Existence and uniqueness of solutions

Fix boundary conditions (A,B) and introduce the D’Alembert wave operator

�A,B = ∂2

∂t2
− �A,B.

For the given mass m > 0, by definition the Klein–Gordon operator is �A,B +m2, which we
will discuss first.

3.1.1. The Klein–Gordon equation. Our first discussion for the construction of solutions
is close to the familiar one in the relativistic case. Namely, assume m > 0 to be such that
−�A,B + m2 > 0. Then actually there is c > 0 such that −�A,B + m2 > c2

I holds. Indeed,
with εA,B = inf spec − �A,B � 0, the relation εA,B + m2 > 0 is valid and so the choice
c = 1/2(εA,B + m2) is used. We introduce the self-adjoint energy operator

h = hA,B,m2 =
√

−�A,B + m2. (3.1)
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By what has just been said h > cI, so h has a bounded inverse, 0 < h−1 < c−1
I. For any

f ∈ L2(G) define

f (±)(p, t) = (e∓ih tf )(p) (3.2)

which satisfy

±i
∂

∂t
f (±)(p, t) = hf (±)(p, t) (3.3)

provided f ∈ D(h). Moreover both f (±)(p, t) satisfy the Klein–Gordon equation

(�A,B +m2)f (±)(p, t) = 0 (3.4)

provided the stronger initial condition f ∈ D(−�A,B) is valid. Indeed, since D(−�A,B) is
left invariant under exp(∓ith) (h and −�A,B trivially commute), the functions f (±)(p, t) are
in D(−�A,B) for all times. Due to the choice of the sign in (3.2), f (+)(p, t) is called a positive
energy solution and f (−)(p, t) a negative energy solution of the Klein–Gordon equation with
initial condition f (±)(p, t = 0) = f (p).

For any g ∈ L2(G), let g(±)(p, t) be defined similarly to f (±)(p, t). If in addition
g ∈ D(−�A,B), an easy calculation shows that

±i(f (±)(·, t),
↔
∂t g

(±)(·, t))G = 〈f, g〉G (3.5)

(f (±)(·, t),
↔
∂t g∓(·, t))G = 0 (3.6)

holds for all t. In the standard context for the Klein–Gordon equation in Minkowski space,
this result is well known; see e.g. [43], section 3b. In particular, the last relation is read as an
orthogonality relation between positive and negative energy solutions.

We can use these observations to solve the initial problem for the hyperbolic differential
equation defined by the operator �A,B +m2 within the L2 context. Indeed, for given f, ḟ

with f ∈ D(−�A,B) = D(h2) and ḟ ∈ D(h), we will provide a solution f (p, t) to the
Klein–Gordon equation satisfying the initial conditions

f (p, t = 0) = f (p), ∂tf (p, t = 0) = ḟ (p). (3.7)

Following standard notation, we call the pair (f, ḟ ) Cauchy data for the Klein–Gordon
equation. In fact with the choice

f (±) = 1
2 (f ± ih−1ḟ ) ∈ D(−�A,B),

the function

f (p, t) = (e−ih tf (+))(p) + (eih tf (−))(p) (3.8)

solves the initial condition (3.7) and satisfies the Klein–Gordon equation. We make the
convention to say that f (p, t) is a solution for all times if for all t f ( , t) ∈ D(−�A,B) holds,
f ( , t) is twice differentiable w.r.t. t in the strong topology in L2(G) and ∂tf ( , t) ∈ D(h) and
finally if f (p, t) satisfies the Klein–Gordon equation. Similarly we suggest a solution for small
times if these properties only hold when |t | < ε for some ε > 0. Obviously f (p, t), as given
by (3.8), is a solution for all times.

In standard contexts there is the well-known uniqueness of solutions of hyperbolic
differential equations for given Cauchy data. The standard proof uses energy conservation,
see e.g. [12, 44, 45]. In the present context we have

Proposition 31. For given boundary conditions (A,B) let m > 0 be such that −�A,B+m2 > 0.
Set h = √−�A,B + m2 and let Cauchy data (f, ḟ ) be given with f ∈ D(−�A,B) and
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ḟ ∈ D(h). Then the solution for small times exists, is unique, therefore extendable to all times
and of the form (3.8).

Proof. For any solution g(p, t) (for small times), we introduce the energy form

0 � E(g( , t)) = 〈∂tg( , t), ∂tg( , t)〉G + 〈hg( , t), hg( , t)〉G . (3.9)

Since the scalar product 〈 , 〉G on L2(G) is positive definite and since h > cI > 0, for given t
E(g( , t)) = 0 holds if and only if g( , t) = ∂tg( , t) = 0. Also E(g( , t)) is conserved

d

dt
E(g(, t)) = 〈∂2

t g(, t), ∂tg(, t)
〉
G +
〈
∂tg(, t), ∂2

t g(, t)
〉
G

+ 〈h∂tg(, t), hg(, t)〉G + 〈hg(, t), h∂tg(, t)〉G
= −〈(−�A,B + m2)g(, t), ∂tg(, t)〉G − 〈∂tg(, t), (−�A,B + m2)g(, t)〉G

+ 〈∂tg(, t), (−�A,B + m2)g(, t)〉G + 〈(−�A,B + m2)g(, t), ∂tg(, t)〉G
= 0. (3.10)

We use this as follows. Let f1(p, t) and f2(p, t) be two solutions for small times for the same
Cauchy data (f, ḟ ) and set g = f1 − f2. By assumption and linearity, g(p, t) is also a solution
for small times. Moreover g has vanishing Cauchy data, g( , t = 0) = ∂tg( , t = 0) = 0,
which implies E(g( , t = 0)) = 0. But this in turn implies E(g( , t)) = 0 for all small t by
(3.10) and therefore g( , t) = ∂tg( , t) = 0 for all small t. �

Concerning the existence of solutions for given initial data, the positivity condition
−�A,B + m2 > 0 may actually be dropped at the price of stronger domain conditions. To see
this, we use operator calculus in combination with the spectral theorem to rewrite the solution
(3.8) to the Klein–Gordon equation as

f (·, t) = cos ht f +
sin ht

h
ḟ , (3.11)

where both cos ht and sin ht/h are bounded self-adjoint operators for all real t. The solutions
at different times s and t are then related by

f (·, t) = sin h(t − s)

h

↔
∂s f (·, s) (3.12)

and we observe that this last relation indeed makes sense without the positivity condition
−�A,B + m2 > 0. More precisely, for any boundary condition (A,B) and mass m > 0,

introduce the Klein–Gordon kernel

GA,B,m2(t) = sin
√−�A,B + m2 t√−�A,B + m2

(3.13)

which is well defined by the operator calculus. In fact, for fixed t and m � 0, the functions

z �→ sin
√

z + m2 t√
z + m2

, z �→ cos
√

z + m2 t (3.14)

are entire in z ∈ C and bounded and real on the real axis. So both GA,B,m2(t) and ∂tGA,B,m2(t)

are bounded self-adjoint operators for all t and all m � 0. In order to avoid extra superfluous
discussion for the case m = 0, we also make the convention

sin
√

k2 + m2 t√
k2 + m2

∣∣∣
m=0

= sin kt

k
. (3.15)

To sum up,

f (·, t) = ∂tGA,B,m2(t) f + GA,B,m2(t)ḟ (3.16)
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is well defined for all t. It satisfies the Klein–Gordon equation and solves the initial problem
if both f and ḟ are in D(−�A,B). Also (3.16) extends to

f (·, t) = GA,B,m2(t − s)
↔
∂s f (s), (3.17)

valid for all t and s. It generalizes (3.12). So far, we have not been able to prove uniqueness
of the solution in this general case, namely when −�A,B + m2 is not necessarily a positive
operator.

3.1.2. The wave equation. We turn to a discussion of the wave operator �A,B . Consider any
boundary condition (A,B). By the discussion in the previous subsection,

f (·, t) = ∂tGA,B,m2=0(t) f + GA,B,m2=0(t)ḟ (3.18)

is a solution of the wave equation �A,B f (p, t) = 0 for given Cauchy data f, ḟ ∈ D(−�A,B).
Concerning uniqueness, there is a result analogous to the one for the Klein–Gordon equation,
see proposition 31, given as

Proposition 32. Let the boundary conditions (A,B) be such that −�A,B is non-negative and
has no zero eigenvalue. Then the solution (3.18) is the unique solution to the wave equation.

In terms of the boundary conditions (A,B) proposition 1 gives a sufficient condition for
the absence of negative eigenvalues, that is n+(AB†) = 0, while proposition (28) provides
necessary and sufficient conditions for the absence of zero as an eigenvalue.

Proof. Again we use the energy function (3.10), now with the choice h = √−�A,B � 0. By
assumption hg = 0 implies g = 0. So again for given t E(g( , t)) = 0 holds if and only if
g( , t) = ∂tg( , t) = 0. The proof now proceeds as the one for proposition 31. �

3.2. Finite propagation speed

In this subsection, we will assume the boundary conditions (A,B) to be such that 	>
A,B is

empty and that zero is not an eigenvalue of −�A,B . The aim is to analyze support properties
of the integral kernel of the operator GA,B,m2(t). When m > 0, we set ω(k) =

√
k2 + m2. The

completeness relation (2.49) gives

GA,B,m2(t)(p, q) = 1

4π

∑
l

∫ ∞

−∞
dk ψl(p; k)ψl(q; k)

sin ω(k)t

ω(k)

+
∑

k∈	,1�ν�n(k)

ψk,ν(p)ψk,ν(q)
sin ω(k)t

ω(k)
. (3.19)

By our convention (3.15), when m = 0 this simplifies to

GA,B,m2=0(t)(p, q) = 1

4π

∑
l

∫ ∞

−∞
dk ψl(p; k)ψl(q; k)

sin kt

k

+
∑

k∈	,1�ν�n(k)

ψk,ν(p)ψk,ν(q)
sin kt

k
. (3.20)

Observe that due to the self-adjointness of −�A,B and as is obvious from (3.19) and (3.20),
the relation

GA,B,m2(t)(p, q) = GA,B,m2(t)(q, p) (3.21)
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holds for all m � 0. In addition, due to (2.32) the relation

GA,B,m2(t)(p, q) = GĀ,B̄,m2(t)(q, p) (3.22)

is valid. As a consequence, for real boundary conditions GA,B,m2(t)(q, p) is real.
We define the space of events to be R × G and write an event as (t, p). By definition, two

events (t, p) and (s, q) are space-like separated if d(p, q) > |t − s|.

Theorem 33. Assume one of the following two conditions is satisfied.

• G is a single vertex graph (I = ∅),
• G is arbitrary and −�A,B has no discrete eigenvalues.

Then for any m � 0, the integral kernel GA,B,m2(t − s)(p, q) vanishes whenever (t, p) and
(s, q) are space-like separated and if in addition at least one of the two points p and q is in
Gext.

So far we have not been able to remove the restriction that p or q must lie in Gext. As a
particular case, we obtain

Corollary 34. GA,B,m2(t)(p, q) vanishes for all p ∈ Ie ⊂ Gext and all q ∈ Ie′ ⊂ Gext whenever
t > 0 is smaller than the passage distance, t < pdist(e, e′).

So a signal entering the external edge e cannot arrive at the external edge e′ before a time
larger than the passage distance pdist(e, e′). This result is of course only nontrivial when the
endpoints of the edges are different, ∂(e) �= ∂(e′), since otherwise pdist(e, e′) = 0.

For the free fields to be constructed in the next section this implies local commutativity
(with the above restriction). We reformulate finite propagation speed in a more familiar form.
For any closed subset O of G and any 0 < d define

Od = {p ∈ G| min
q∈O

d(p, q) � d},

the closed set of points in G with distance less or equal to d from O.

Corollary 35. Under the conditions of the theorem, the following holds for the solution of the
Klein–Gordon equation (or the wave equation) for given Cauchy data (f, ḟ ).

• If f and ḟ both have support in O ⊂ Gext, then f (·, t) has support in O|t | for all t.
• If f and ḟ both have support in O, then suppf (·, t) ∩ Gext ⊂ O|t | for all t.

In particular, if both f and ḟ have support on the external edge Ie, then f (·, t) vanishes
on any external edge Ie′ (e′ �= e) as long as |t | < pdist(e, e′).

4. Free quantum fields on metric graphs

In this section, we will construct free fields on the graph G. The reader is supposed to be
familiar with the basic concepts of second quantization; see, e.g., [19, 20, 43, 47]. Also from
now on, we will assume that the boundary conditions (A,B) are chosen in such a way that
there are no positive (or zero) eigenvalues of −�A,B , that is 	> = ∅ and 	 = 	<, so bound
states are still allowed. As a trivial consequence of this assumption, the graph has to have at
least one external edge, E �= ∅, since otherwise the entire spectrum is discrete and there are
positive eigenvalues. Finally we will assume that m > 0 is chosen such that −�A,B + m2 > 0.
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4.1. Creation and annihilation operators and the RT-algebra

We introduce the creation and annihilation operators 2

al(k), al(k)�, k > 0

ak,ν , ak,ν �, k ∈ 	, 1 � ν � n(k)
(4.1)

satisfying the commutation relations

[al(k), al′(k′)�] = 2πδll′δ(k − k′), [ak,ν , ak′,ν ′ �] = δk,k′δν,ν ′ , (4.2)

while all other commutators vanish. These operators act in the bosonic Fock space F(H1)

with H1 = L2(G) as the choice of the one-particle space, that is

F(H1) = C ⊕ H1 ⊕ · · · ⊕ Hn ⊕ · · · (4.3)

Hn = H1 ⊗
s
H1 ⊗

s
H1 ⊗

s
H1︸ ︷︷ ︸

n

, (4.4)

such that Hn is the n-particle space. ⊗s denotes the symmetric tensor product. al(k)� has the
interpretation of a creation of a particle with wavefunction ψl( ; k), while ak,ν � is the creation
operator of a particle with (bound state) wavefunction ψk,ν . The normalization in (4.2) is
chosen in accordance with (2.17), (2.19) and (2.46). For reasons which will become clear
in a moment, we elaborate on this. By the completeness relation (2.49) any wavefunction
f ∈ L2(G) has a Fourier type expansion of the form

f (p) =
∑
l∈E

∫ ∞

0
dk f̃ l(k)ψ

l(p; k) +
∑

k∈	,1�ν�n(k)

f̃ ν(k)ψk,ν(p) (4.5)

with expansion coefficients given as

f̃ l(k) = 1√
2π

∫
p∈G

ψl(p; k)f (p) dp, f̃ ν(k) =
∫

p∈G
ψk,ν(p)f (p) dp (4.6)

such that the Parseval equality holds in the form

〈f, f 〉G =
∑
l∈E

∫ ∞

0
dk|f̃ l(k)|2 +

∑
k∈	,1�ν�n(k)

|f̃ ν(k)|2, (4.7)

thus establishing an isometry of Hilbert spaces

L2(G) ∼= L2([0,∞), dk) ⊕ C
N	

where

N	 =
∑

k∈	=	<

n(k) � |E| + 2|I|

is the total number of bound states, counting multiplicities. With this notation, the creation
operator for a particle with an arbitrary wavefunction f is of the form

a�(f ) =
∑
l∈E

∫ ∞

0
dk f̃ l(k)a

l(k)� +
∑

k∈	,1�ν�n(k)

f̃ ν(k)ak,ν � (4.8)

and correspondingly its adjoint a(f ) is the annihilation operator for the wavefunction f .

2 We stick to the standard notational convention in QFT and use � to denote the adjoint (only) in this case.
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The (self-adjoint) number operator, the second quantization of the identity operator on
the one-particle space, is

N = 1

2π

∑
l∈E

∫ ∞

0
dk al(k)�al(k) +

∑
k∈	,1�ν�n(k)

ak,ν �ak,ν . (4.9)

We define h = √−�A,B + m2, see the discussion in section 3.1, to be the one-particle Hamilton
operator, so its second quantization is the self-adjoint operator

H = 1

2π

∑
l∈E

∫ ∞

0
dk ω(k) al(k)�al(k) +

∑
k∈	,1�ν�n(k)

ω(k)ak,ν �ak,ν (4.10)

and we observe that ω(k) is positive for all k ∈ 	< = 	 by the choice of m > 0.
The operator

P = 1

2π

∑
l∈E

∫ ∞

0
dk k al(k)�al(k) (4.11)

can be given the interpretation of the sum of the absolute value of the momenta of all
particles in a state of the Fock space which does not contain particles with bound state
wavefunctions. Stated more abstractly, let Pac be the orthogonal projector onto the subspace
of L2(G) corresponding to the absolutely continuous spectrum of −�A,B . Then P is the second
quantization of the one-particle operator

√−�A,BPac. That there is no proper momentum
operator in the familiar sense has of course to do with the fact that the configuration space is a
graph. So the notion of translations in space and with the momentum operator as infinitesimal
generator does not make sense. But what remains is some kind of absolute value of momentum
reminiscent of the conservation of the absolute value of the momentum of a (classical) particle
under elastic scattering. Both N and P commute with H0 and are therefore conserved under
time evolution.

With these preparatory remarks, we are now in the position to provide an explicit
construction of RT (reflection–transmission)-algebras [7, 36, 37]. The main observation
is that k in al(k) and al(k)� is positive. So we are free to define creation and annihilation
operators also for negative k. Indeed, we may set

al(−k) =
∑
l′∈E

S(k)l l′a
l′(k)

al(−k)� =
∑
l′∈E

S(−k)l′ la
l′(k)�, k > 0,

(4.12)

where we recall the general relation S(−k) = S(k)−1 = S(k)† valid for all real k �= 0. With
this definition, the relations (4.12) remain valid for k < 0 and then al(k)� is again the adjoint
of al(k). Since for k > 0 the operator al′(k)� creates a particle with wavefunction ψl( ; k), by
linearity the operator al(−k)� as defined by (4.12) creates a particle with wavefunction∑

l′∈E
S(−k)l′lψ

l′(p; k),

which by (2.26) equals ψl( ;−k). This gives the first part of the next lemma, while the second
part follows by an easy calculation.

Lemma 36. For any k > 0 the operator al(−k)� as defined by (4.12) creates a particle with
wavefunction ψl( ;−k). The extended family of operators

{al(k), al(k)�}l∈E,−∞<k<∞
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satisfies the commutation relations

[al(k), al′(k′)�] = δl l′δ(k − k′) + S(k)ll′δ(k + k′), −∞ < k, k′ < ∞, l, l′ ∈ E,

(4.13)

again with all other commutators vanishing.

Remark 37. This realization of a RT-algebra agrees with the one used in [4, 42]. The
construction (4.12) of the al(−k) and al(−k)� out of the al′(k) and al′(k)� is reminiscent of the
action of the Weyl group in the root space of a Lie algebra, by which any root is obtained from
the set of positive roots [14]. A different context, where a (scalar) scattering matrix appears
in commutation relations, is provided in [15].

4.2. The free Hermitian quantum field

For reasons to become clear in a moment, in this subsection the boundary conditions (A,B)

will be taken to be real. The field operator, again of dimension zero, is defined to be

�(t, p) = eiHt�(p) e−iHt

=
∑
l∈E

∫ ∞

0

dk√
2π

1√
2ω(k)

(ψl(p; k) eiω(k)t al(k)� + h.c.)

+
∑

k∈	,1�ν�n(k)

1√
2ω(k)

(ψk,ν(p) eiω(k)t ak,ν� + h.c.). (4.14)

where h.c. denotes Hermitian conjugate. By construction, this field is Hermitian and
�(t + s, p) = eiH t�(s, p) e−iH t holds. Again we use a similar notational convention as
the one used for a local description of functions on G. Thus for its restriction to an edge j and
with the local coordinate (j, x) x ∈ [0, aj ] for a point p, there the field is given as

�j(t, x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∑
l∈E
∫∞

0
dk√
2π

1√
2ω(k)

((eikxδjl + S(k)jl e−ikx) eiω(k)t al(k)� + h.c.)

+
∑

k∈	,1�ν�n(k)
1√

2ω(k)

(
s

k,ν
j eikx eiω(k)t ak,ν � + h.c.

)
, j ∈ E∑

l∈E
∫∞

0
dk√
2π

1√
2ω(k)

((α(k)jl e−ikx + β(k)jl eikx) eiω(k)t al(k)� + h.c.)

+
∑

k∈	,1�ν�n(k)
1√

2ω(k)

((
u

k,ν
j eikx + v

k,ν
j e−ikx

)
eiω(k)t ak,ν � + h.c.

)
, j ∈ I.

(4.15)

Observe that the ψk,ν(p) need not be chosen real. However, the reality of the boundary
conditions comes as follows into play. By corollary 18, the ψl(p; k) and the ψk,ν(p) are also
eigenfunctions of −�A,B . Since the boundary conditions are real, we can use lemma 20 and
(4.12) to simplify the first terms in (4.15) using the RT-algebra notation and ω(−k) = ω(k)∑
l∈E

∫ ∞

0

dk√
2π

1√
2ω(k)

((eikxδjl + S(k)jl e−ikx) eiω(k)t al(k)� + h.c.)

=
∫ ∞

−∞

dk√
2π

1√
2ω(k)

(ei(kx+ω(k)t)aj (k)� + h.c.), j ∈ E∑
l∈E

∫ ∞

0

dk√
2π

1√
2ω(k)

((α(k)jl e−ikx + β(k)jl eikx) eiω(k)t al(k)� + h.c.)

=
∑
l∈E

∫ ∞

−∞

dk√
2π

1√
2ω(k)

(β(−k)jl ei(kx+ω(k)t)al(k)� + h.c.), j ∈ I.

(4.16)

Let � denote the vacuum.
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Proposition 38. The Hermitian field � satisfies the Klein–Gordon equation

(�A,B +m2)�(p, t) = 0.

For all times t the boundary conditions

A�(t) + B�′(t) = 0

are valid in the sense of expectation values in states which are linear combinations of states
of the form ∏

i

a(fi)
��

with fi ∈ D(−�A,B + m2).

Proof. For general boundary conditions (A,B), we recall that if ψ satisfies the boundary
condition (2.3), then ψ̄ satisfies the boundary condition (Ā, B̄). As a consequence, if
the boundary conditions (A,B) are real, then both eiω(k)tψl( ; k) and eiω(k)tψl( ; k) satisfy
the boundary condition (2.3) for all l ∈ E and all k ∈ R+ and the claim follows
from the construction of � and the choice of the states. We omit details. �

We also introduce the conjugate field

�(p, t) = �̇(p, t) = ∂

∂t
�(p, t). (4.17)

Using the completeness relation for the eigenfunctions of −�A,B in the form (2.49), we derive
the

Theorem 39. For the boundary conditions (A,B), the equal time commutation relation

[�(p, t),�(q, t)] = iδ(p, q), p, q ∈ G (4.18)

is valid.

Observe that this relation fixes the normalization of the field.

4.3. The free complex quantum field

We now construct a complex field �, which has the advantage of being able to carry (electric)
charge. Associated is a particle with that charge and an antiparticle with the opposite charge.
Accordingly the one-particle space H1 is chosen to be L2(G) ⊕ L2(G), the first for a particle
and the second for the corresponding antiparticle.

The one-particle Hamiltonian h on that space is chosen to be

h =
√

−�A,B + m2 ⊕ 0 + 0 ⊕
√

−�Ā,B̄ + m2. (4.19)

The boundary conditions (A,B) themselves may be chosen arbitrarily. To simplify the
exposition, we assume that −�A,B and hence also −�Ā,B̄ has no discrete spectrum, cf
corollary 14. So in particular −�A,B � 0, −�Ā,B̄ � 0. Since the boundary conditions
(A,B) are not necessarily real, relation (2.42) need not hold. However, ψ( ; k) satisfies the
boundary conditions (Ā, B̄) by lemma 13. The creation and annihilation operators for the
particles are as before, see (4.2). As for the antiparticles, for l ∈ E and k > 0, introduce
operators bl(k) and their adjoints bl(k)� satisfying commutation relations of the same form and
commuting with all al′(k′) and al′(k′)�. They are the annihilation and creation operators for the
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antiparticle with wavefunction ψl( ; k) = ψl
A,B( ; k), which we recall differs from ψl

Ā,B̄,a
( ; k).

Correspondingly we set

bl(−k) =
∑
l′∈E

S(−k)l′lb
l′(k) =

∑
l′∈E

S(k)ll′b
l′(k)

bl(−k)� =
∑
l′∈E

S(−k)l′lb
l′(k)� =

∑
l′∈E

S(k)ll′b
l′(k)� k > 0,

with S(k) = SA,B(k). By (2.26), the interpretation is that bl(−k)� creates a particle with
wavefunction ψl( ;−k). H, the second quantization of h as given by (4.19), is

H = 1

2π

∑
l∈E

∫ ∞

0
dk ω(k)al(k)�al(k) +

1

2π

∑
l∈E

∫ ∞

0
dk ω(k)bl(k)�bl(k).

The field � and its adjoint is now given as

�(t, p) = eiHt�(p) e−iHt =
∑
l∈E

∫ ∞

0

dk√
2π

1√
2ω(k)

ψl(p; k)(eiω(k)t bl(k)� + e−iω(k)t al(k))

�†(t, p) = eiHt�†(p) e−iHt =
∑
l∈E

∫ ∞

0

dk√
2π

1√
2ω(k)

ψl(p; k)(e−iω(k)t bl(k) + eiω(k)t al(k)�).

(4.20)

In local coordinates and in terms of the RT-algebra, we can write the field � (and similarly its
adjoint) as

�j(t, x) =
⎧⎨⎩
∫∞
−∞

dk√
2π

1√
2ω(k)

(ei(ω(k)t−kx) bj (k)� + e−i(ω(k)t+kx)aj (k)), j ∈ E∑
l∈E
∫∞
−∞

dk√
2π

1√
2ω(k)

βjl(k)(ei(ω(k)t−kx) bl(k)� + e−i(ω(k)t+kx)al(k)), j ∈ I.

(4.21)

Use has been made of (2.25). The motivation for this definition of the one-particle Hilbert
space for the antiparticle, the corresponding one-particle Hamiltonian and finally the field �

stems from

Proposition 40. The field �(p, t) and its adjoint �†(p, t) satisfy the Klein–Gordon equation

(� +m2)�(p, t) = 0, (� +m2)�†(p, t) = 0

and the boundary conditions

A�(t) + B� ′(t) = 0 = Ā�†(t) + B̄�†′(t)

for all times.

As in proposition 38, the last relation holds in the sense of an expectation value in suitable
states.

Let C denote charge conjugation, the operation which interchanges particles and
antiparticles. In addition, introduce the antilinear and antiunitary time reversal map T , cf
remark 21. Then there is CT invariance, that is

CT �(p, t)(CT )−1 = �(p,−t) (4.22)

holds.

28



J. Phys. A: Math. Theor. 42 (2009) 495401 R Schrader

4.4. The commutator function

In this subsection, we calculate the commutator of the fields. For the Hermitian field, we
obtain

[�(t, p),�(s, q)] =
∑
l∈E

∫ ∞

0

dk

2π

1

2ω(k)
(ψl(p; k)ψl(q; k) eiω(k)(t−s)

−ψl(p; k)ψl(q; k) e−iω(k)(t−s)) +
∑

k∈	,1�ν�n(k)

× 1

2ω(k)
(ψk,ν(p)ψk,ν(q) eiω(k)(t−s) − ψk,ν(p)ψk,ν(q) e−iω(k)(t−s)). (4.23)

Since the boundary conditions are real, the reality properties∑
l∈E

ψl(p; k)ψl(q; k) =
∑
l∈E

ψl(p; k)ψl(q; k);
∑

1�ν�n(k)

ψk,ν(p)ψk,ν(q)

=
∑

1�ν�n(k)

ψk,ν(p)ψk,ν(q) (4.24)

hold. Indeed, the first relation is easily derived from (2.42). To prove the second one, observe
that for given k ∈ 	 = 	<, both sides give the unique integral kernel for the orthogonal
projector in L2(G) onto the eigenspace of −�A,B with eigenvalue k2 < 0. In fact, since the
ψk,ν form an orthonormal basis in that space, so do their complex conjugates. Inserting the
relations (4.24) into (4.23) gives the first part of the next theorem. The proof of the second
part is even easier and will therefore be omitted.

Theorem 41. The commutator for the free Hermitian field with real boundary conditions
(A,B) is given as

[�(t, p),�(s, q)] = −iGA,B,m2(t)(p, q). (4.25)

Similarly for the complex field and arbitrary boundary conditions (A,B), the commutators
are

[�(t, p),�(s, q)†] = −iGA,B,m2(t)(p, q), [�(t, p),�(s, q)] = 0. (4.26)

The last relation of course also implies [�(t, p)†, �(s, q)†] = 0. In the Minkowski space
context, it is well known that (up to a sign) the Klein–Gordon kernel equals the commutator
function; see e.g. [43] section 7c and (4.28) below. So in analogy to the Minkowski space
context and as a consequence of finite propagation speed, we have local commutativity in the
form

Corollary 42. For space-like separated events (t, p) and (s, q), the commutators (4.30) and
(4.31) vanish provided as least one of the points p and q lies in Gext.

4.5. Examples

We illustrate our discussion in the context of single vertex graphs with two simple examples.
First we make the following notational convention. If p has local coordinate (i, x) and q the
local coordinate (j, y) and for given (A,B) and m we set

Gij (t, x; s, y) = GA,B,m2(t − s)(p, q). (4.27)
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Also we will need the following quantities. Let �(t, x;m) be the usual relativistic commutator
function of mass m in 1 + 1 spacetime dimensions:

�(t, x;m) = 1

2π i

∫ ∞

−∞

dk

2ω(k)
eikx(e−iω(k)t − eiω(k)t ) = �(+)(t, x;m) + �(−)(t, x;m) (4.28)

= −
∫ ∞

−∞

dk

2π
eikx sin ω(k)t

ω(k)
. (4.29)

More explicitly

�(t, x;m) =
{

0 t2 − x2 < 0

−sign t N0(m
√

t2 − x2) t2 − x2 > 0.
(4.30)

N0 is the zeroth Neumann function (a Bessel function of the second kind). For large argument,
it satisfies

N0(z) �
√

2

πz
sin(z − π/4) for 1 � z. (4.31)

For a more detailed discussion of the commutator function in local coordinates and which
will be needed in the proof of theorem 33 in appendix B, introduce the distribution in
0 < x,−∞ < t < ∞

D(t, x;m, κ) = 1

2π i

∫ ∞

−∞

dk

2ω(k)
eikx(e−iω(k)t − eiω(k)t )

k + iκ

k − iκ

= D(+)(t, x;m, κ) + D(−)(t, x;m, κ)

= −
∫ ∞

−∞

dk

2π
eikx sin ω(k)t

ω(k)

k + iκ

k − iκ
(4.32)

with m > 0 and κ real, the values κ = 0,∞ being allowed, that is

D(t, x;m, κ = 0) = �(t, x;m), D(t, x;m, κ = ∞) = −�(t, x;m). (4.33)

By construction D(t, x;m, κ) is odd in t. For κ �= ∞, write

D(t, x;m, κ) = �(t, x;m) + d(t, x;m, κ)

= D(+)(t, x;m, κ) + D(−)(t, x;m, κ)

D(±)(t, x;m, κ) = �(±)(t, x;m) + d(±)(t, x;m, κ)

(4.34)

with the bona fide function

d(t, x;m, κ) = 2iκ

2π i

∫ ∞

−∞

dk

2ω(k)
eikx(e−iω(k)t − eiω(k)t )

1

k − iκ

= d(+)(t, x;m, κ) + d(−)(t, x;m, κ)

= −2iκ
∫ ∞

−∞

dk

2π
eikx sin ω(k)t

ω(k)

1

k − iκ
, (4.35)

such that d(−)(t, x;m, κ) = −d(+)(−t, x;m, κ) = d(+)(t, x;m, κ). It is easy to show that for
given m and κ , d(±) are uniformly bounded functions of x and t and Hölder continuous in
both x and t of Hölder index <1. D(+), d(+) and D(−), d(−) are positive and negative energy
solutions of the usual Klein–Gordon equation, respectively:(

∂2
t − ∂2

x + m2
)
D(±)(x, t;m, κ) = (∂2

t − ∂2
x + m2

)
d(±)(x, t;m, κ) = 0.

Moreover, the differential equation(
∂

∂x
+ κ

)
d(±)(x, t;m, κ) = −2κ�(±)(x, t : m) (4.36)
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holds. d(±)(t, x;m, κ) decays at least like |t |−1/2 for large t and fixed x. This is well known
from the theory of Haag–Ruelle scattering theory, see e.g. [16, 20]. Sufficient conditions for
stronger decay are also well known but do not apply here. When 0 < x < |t |, the stationary
phase approximation gives

d(±)(t, x;m, κ) ∼= (1 − v2)−1/4 κ

± mv√
1−v2 − iκ

e∓(φ(x,t)+i π
4 signt) 1√

2πm|t | , (4.37)

with v = x/t and φ(x, t) = m
√

1 − v2 t . As a function of t and for fixed x, the t−1/2 decay
as well as the oscillations are visible in numerical computations of d(±).

Example 43. (The half-line with Robin boundary conditions at the origin). View the
positive real axis R+ as a single vertex graph with one external edge, |E| = 1. All possible
boundary conditions at the origin giving rise to self-adjoint copulations are the Robin boundary
conditions and which are real

cos τψ(0) + sin τψ ′(0) = 0, 0 � τ < π. (4.38)

They interpolate between Dirichlet (sin τ = 0) and Normans (cos τ = 0) boundary conditions.

Denote the resulting Laplace operator by −�τ . The scattering matrix is now just a
function

Sτ (k) = −cos τ − ik sin τ

cos τ + ik sin τ
(4.39)

satisfying Sτ (−k) = Sτ (k)−1 for k ∈ C and being of modulus 1 for k ∈ R\{0}, as it should.
There is a pole of Sτ (k) at k = i cot τ . So for cot τ < 0, this pole lies in the lower k-half-plane
(the second physical sheet). Then there is no bound state and −�τ � 0. Conversely cot τ > 0
gives rise to a pole of S(k) in the upper half-plane at k = i cot τ and correspondingly there is
one bound state with (normalized and real) bound state wavefunction

ψb,τ (x) =
√

2 cot τ e− cot τ x (4.40)

and with bound state energy

ετ = −cot2 τ < 0. (4.41)

As a consequence −�τ � εb. Observe that Sτ (k) is real on the imaginary axis, as should be
by remark 12. Note also the agreement with lemma 2 and proposition 1. In fact, in the present
case, AB† = cos τ sin τ = cot τ sin2 τ .

By our general discussion, the improper eigenfunctions in this example are given as

ψτ (x; k) = e−ikx + Sτ (k) eikx, k > 0. (4.42)

This set is complete if cot τ < 0 while for cot τ > 0 this set combined with the bound
state wavefunction (4.40) forms a complete set. For finite cot τ �= 0 and with the condition
m > max(0, cot τ), such that ω(i cot τ) > 0 for the mass, we obtain (0 < x, y)

G(t, x; s, y) = −�(t − s, x − y;m) − �(t − s, x + y;m) − d(t − s, x + y;m, cot τ)

+ �(cot τ)2 cot τ
sin(ω(i cot τ) · (t − s))

ω(i cot τ)
e− cot τ(x+y). (4.43)

� is the Heaviside step function.
This example also provides a nice illustration to a long standing problem, namely to what

extent the scattering matrix is determined by the cross section [10, 18, 33, 34, 35, 39]. Define
the scattering amplitude Tτ (k) by Sτ (k) = 1 + 2i Tτ (k), that is

Tτ (k) = −i
cos τ

cos τ + ik sin τ
. (4.44)
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The knowledge of |Tτ (k)|2 for all k > 0 only fixes sin2 τ . An additional information, namely
whether there is a bound state or not, is needed to fix τ itself. A way to overcome this dilemma
and to solve this inverse problem in the present context of quantum graphs has been proposed
in [28].

The next example is the single vertex graph with two external lines which may also be
viewed as the real line with the origin as a distinguished point. As boundary conditions we
take the the one describing the δ-potential of strength λ at the origin. This is a very popular
model for describing a pointlike impurity.

Example 44. (The single vertex graph with two external edges (n = |E| = 2) and with a
boundary condition describing the δ-potential on the line)

The graph is obtained by considering two copies of R+ with their origins identified. The
real boundary conditions are given as

A =
(

1 −1
0 λ

)
, B =

(
0 0
1 1

)
.

The choices λ < 0 and λ > 0 describe an attractive and a repulsive δ-potential on R,

respectively.

The resulting on-shell scattering matrix is a symmetric 2 × 2 matrix

Sλ(k) = 1

2k + iλ

(−iλ 2k
2k −iλ

)
= 2k − iλ

2k + iλ

1

2

(
1 1
1 1

)
− 1

2

(
1 −1

−1 1

)
. (4.45)

The second expression gives the spectral decomposition (2.50) of the scattering matrix for this
example, that is P 0 = 0 and

P −λ/2 = 1

2

(
1 1
1 1

)
, P ∞ = 1

2

(
1 −1

−1 1

)
. (4.46)

It has the additional symmetry

Sλ(k) =
(

0 1
1 0

)
Sλ(k)

(
0 1
1 0

)
(4.47)

describing invariance of the boundary conditions under the interchange of the two edges.
Using local coordinates, we arrange the components ψl

j (x; k) (j, l = 1, 2; x > 0) of the two
improper eigenfunctions ψl( ; k) as a 2 × 2 matrix(

e−ikx − iλ
2k+iλ eikx 2k

2k+iλ eikx

2k
2k+iλ eikx e−ikx − iλ

2k+iλ eikx

)
.

Like the S-matrix, this matrix is symmetric, reflecting the parity invariance of the δ-potential.
Also ordinary plane waves appear when λ = 0, as they should. The relation (2.26) is
easily verified. In the attractive case λ < 0, there is a bound state with bound state energy
ελ = −λ2/4. The two local components of the bound state wavefunction are both of the form

ψj(x) =
√

−λ

2
e

λx
2 j = 1, 2. (4.48)

Observe that

AB† =
(

0 0
0 λ

)
and recall again lemma 2 and proposition 1 concerning the number of bound states.
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With the notational convention (4.27), GA,B,m2 in local coordinates can be written as a
2 × 2 matrix in the form, see (B.2),

G(t, x; s, y) = −�(t − s, x − y;m)

(
1 0
0 1

)
− �(t − s, x + y;m)

(
0 1
1 0

)
− d(t − s, x + y;m,−λ/2)

1

2

(
1 1
1 1

)
+ �(−λ)(−λ)

sin(ω(−iλ/2)(t − s))

ω(−iλ/2)
e

λ(x+y)

2
1

2

(
1 1
1 1

)
. (4.49)

Acknowledgments

The author wants to thank L Faddeev, M Karowski, V Kostrykin and A Sedrakyan for
stimulating and helpful comments. This work has been supported in part by the Alexander
von Humboldt Foundation.

Appendix A. Proof of relation (2.17)

The general idea of proof follows a familiar route; see, e.g. [46]. However, the boundary
conditions defining the Laplacian enter in a simple but crucial way, which warrant a more
detailed discussion. In addition, the regularity of the scattering matrix S(k) for k > 0 away
from 	> will be used. For given R > 0, let GR be the set obtained from G by deleting from
any external edge e all points with distance larger than R from its initial vertex ve. On each
edge e we introduce an extra vertex at distance R from ve denoted by ve,R . Obviously GR is a
compact graph and a closed subset of G. In particular GR has no external edges and hence is
compact. The set of vertices of GR is given as

VGR
= V ∪ {ve,R}e∈E .

In other words, GR is obtained from G by removing the external edges e ∈ E , each isomorphic
to the half-line [0,∞) and replacing each of them by a closed interval of the form [0, R],
where the vertex ve = ∂(e) corresponds to 0 ∈ [0, R] and the new vertex ve,R to R ∈ [0, R].
Correspondingly there is a Hilbert space L2(GR) with the scalar product denoted by 〈 , 〉R . By
restriction, any function f on G defines a function on GR also denoted by f . In this way, any
element in L2(G) defines an element in L2(GR) and

lim
R→∞

〈f, g〉R = 〈f, g〉

clearly holds for any f, g ∈ L2(G). As for the claim (2.17), the functions ψl( ; k) are elements
in each L2(GR) but not of L2(G), as already mentioned. Now we write

〈ψl(; k), ψl′(; k′)〉R = − 1

k2 − k′2 (〈�A,Bψl(; k), ψl′(; k′)〉R − 〈ψl(; k),�A,Bψl′(; k′)〉R)

and perform a partial integration. Since the functions ψl( ; k) satisfy the boundary conditions,
what remains are only contributions from ψl( ; k) and its first derivative at the vertices ve,R .
We now observe

ψl(ve,R; k) = ψl
e(x = R; k) = e−iRkδle + S(k)el eiRk

d

dx
ψl(ve,R; k) = d

dx
ψl

e(x = R; k) = −ik e−iRkδle + ikS(k)el eiRk
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and obtain

〈ψl(; k), ψl′(; k′)〉R = − 1

k2 − k′2
∑
e∈E

((ik eiRkδle − ikS(k)el e−iRk)(e−iRk′
δl′e + S(k′)el′ eiRk′

)

− (eiRkδle + S(k)el e−iRk)(−ik′ e−iRk′
δl′e + ik′S(k′)el′ eiRk′

))

= − i

k − k′

(
eiR(k−k′)δll′ −

∑
e∈E

S(k)elS(k′)el′e−iR(k−k′)
)

+
i

k + k′ (S(k)l′l e−iR(k+k′) + S(k′)ll′ eiR(k+k′)).

Since k + k′ > 0, the second term on the r.h.s. vanishes for R → ∞ in the sense of distributions
by the Riemann–Lebesgue lemma. As for the first term, write

− i

k − k′

(
eiR(k−k′)δll′ −

∑
e∈E

S(k)elS(k′)el′ e−iR(k−k′)
)

= 2
sin R(k − k′)

k − k′ δll′ − i

k − k′

(
δll′ −

∑
e∈E

S(k)elS(k′)el′
)

e−iR(k−k′). (A.1)

Here the first term converges in the sense of distributions to 2πδ(k − k′)δll′ as R → ∞. As
for the second term, we use the unitarity of S(k) to write

δll′ −
∑
e∈E

S(k)elS(k′)el′ =
∑
e∈E

S(k)el(S(k)el′ − S(k′)el′).

By corollary 8, all matrix elements of S(k) are differentiable functions of k ∈ R+\	>. Since
all matrix elements also are bounded by 1 due to unitarity, we have the estimate

|S(k)ll′ − S(k′)ll′ | � const · |k − k′|, k, k′ ∈ R+\	>, l, l′ ∈ E,

whenever |k− k′| is small. Observe that R+\	> is a union of open, pairwise disjoint intervals.
This gives the estimate

|δll′ −
∑

e∈E S(k)elS(k′)el′ |
|k − k′| � const, k, k′ ∈ R+\	>, l, l′ ∈ E,

again whenever |k − k′| is small. Therefore and again by the Riemann–Lebesgue lemma the
second term in (A.1) tends to zero as R → ∞.

Appendix B. Proof of theorem 33

B.1. Proof of theorem 33 in the single vertex case

In the single vertex case, besides a proof of the theorem, in this appendix we will provide
a detailed analysis of the Klein–Gordon kernel when written in local coordinates, see the
convention (4.27). We obtain

Gij (t, x; s, y) = −�(t − s, x − y;m)δij +
∫ ∞

−∞

dk

2π
S(k)ij eik(x+y) sin(ω(k)(t − s))

ω(k)

+
∑

0<κ∈I0

2κP κ
ij e−κ(x+y) sin(ω(iκ)(t − s))

ω(iκ)
, (B.1)

where we used corollary 17 and relations (2.55), (2.59) and (2.60). Recall also the convention
(3.15) for the case m = 0. We can rewrite this as
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Re k

Im k

im

C− C+

Figure B1. The upper k-half-plane with a cut from im to i∞ for the function ω(k). C± form the
lips of the cut.

Gij (t, x; s, y) = −�(t − s, x − y;m)δij − �(t − s, x + y;m)
(
δij − 2P ∞

ij

)
−

∑
∞�=κ∈I

d(t − s, x + y;m, κ)P κ
jl

+
∑

0<κ∈I0

2κP κ
jl e−κ(x+y) sin(ω(iκ)(t − s))

ω(iκ)
. (B.2)

Note that P ∞ may be the zero matrix. We shall use the representation (B.1) to prove the
theorem.

For the single vertex graph, the distance between two points p and q with local coordinates
(i, x) and (j, y) is

d(p, q) = d((i, x), (j, y)) =
{ |x − y| i = j

x + y i �= j.
(B.3)

As a consequence, the first term on the r.h.s. of (B.1) vanishes for space-like separations,
a well-known property of the relativistic commutator function. As for the integral in (B.1),
insert the relation (2.50). We observe that d((i, x), (j, y)) � x + y is always valid, so for
space-like separations x + y > |t − s| holds and thus we can deform the integral from −∞ to
+∞ to the integral from −∞ + iρ to +∞ + iρ for arbitrary ρ > 0. Indeed, by the analyticity
of the first function in (3.14) we can apply Cauchy’s theorem. During this deformation, we
pick up a residue at each of the poles k = iκ with 0 < κ < ρ. Each such term, however, is
compensated by the corresponding term in the sum in (B.1). When we let ρ → +∞, we claim
that the integral from −∞ + iρ to +∞ + iρ vanishes. To see this,view the function k �→ ω(k)
as analytic in the cut (open) upper k-half-plane with a cut from im to i∞, see figure B1. In
this cut upper k-half-plane, the estimate Im ω(k) � Im k holds.

Moreover both functions
1

2iω(k)
eiω(k)(t−s), − 1

2iω(k)
e−iω(k)(t−s) (B.4)

are also analytic there and their sum equals
sin(ω(k)(t − s))

ω(k)
there. Furthermore, this sum has no discontinuity across the cut, as it should since it is entirely
analytic. Indeed, replace k by the variable m � λ < ∞ via k = iλ − ε on the left lip C− and
k = iλ + ε on the right lip C+ with ε > 0. But on the left lip,

lim
ε↓0

ω(iλ − ε) =
√

λ2 − m2
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while on the right lip

lim
ε↓0

ω(iλ + ε) = −
√

λ2 − m2.

Using Im ω(k) � Im k for k in the upper half-plane, we can therefore estimate∣∣∣∣ sin(ω(k)(t − s))

ω(k)

∣∣∣∣ � eImk|t−s|

|ω(k)| . (B.5)

in the upper half-plane and which combined with

|eik(x+y)| = e−Imk(x+y)

proves the claim. This concludes the proof of theorem 33 when the graph is a single vertex
graph. Observe that we have actually proved

Gij (t, x; s, y) = −�(t − s, x − y;m)δij when x + y > |t − s|. (B.6)

(B.2) compares with (B.6), valid when x +y > |t −s|. If at least one of the points p and q is far
away from the vertex, that is x � 1 or y � 1, then the last term on the r.h.s. of (B.2) becomes
exponentially small, uniformly for all times t and s. To sum up, as far as commutators are
concerned and by comparison with (4.30), the contribution from d in (B.2) compares with the
two preceding terms there.

Remark 45. We observe from the proof that in the single vertex case, the bound state
contributions in the definition of the fields are necessary in order to obtain locality. A
somewhat similar observation was made in the context of integrable models in quantum field
theory [21]. There it was observed that bound state contributions in the form factors of the
sine–Gordon model were crucial for determining the wavefunction renormalization constant.
Moreover, in the articles [2, 41], local commutation relations for certain integrable models
were established, see in particular relation (54) in [2], for which also contributions from bound
states are relevant.

B.2. Proof of theorem 3 for an arbitrary graph when 	 = ∅

We turn to the case of an arbitrary graph with the spectral assumption 	 = ∅ for the Laplacian
−�A,B , that is with the assumption that there are no bound states. In local coordinates

Gij (t, x; s, y)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−�(t − s, x − y;m)δij +
∫ ∞

−∞

dk

2π
S(k)ij eik(x+y) sin(ω(k)(t − s))

ω(k)
for i, j ∈ E∫ ∞

−∞

dk

2π
(α(k)ij eik(x+y) + β(k)ij eik(−x+y))

sin(ω(k)(t − s))

ω(k)
for i ∈ I, j ∈ E∫ ∞

−∞

dk

2π
((αA,B(k) eikx + βA,B(k) e−ikx)βĀ,B̄ (−k)T )ij eiky sin(ω(k)(t − s))

ω(k)

for i, j ∈ I.

(B.7)

Relation (2.23) has been used for the case i, j ∈ E , corollary 11 for the case i ∈ I, j ∈ E .
Lemma 11 and corollary 16 have been used for the case i, j ∈ I. Consider first the
case j, l ∈ E . The first term, the relativistic commutator function, has already been dealt
with and vanishes for space-like separations. As for the integral we insert the path space
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expansion (2.72) for the scattering matrix to obtain the representation∑
w∈Wij

∫ ∞

−∞

dk

2π
S(w; k)ij eik(x+y+|w|) sin(ω(k)(t − s))

ω(k)
. (B.8)

Here and in what follows, we will freely interchange summation and integration. This is
permitted as can be shown with help of proposition 5.6 in [31] and where one allows the
lengths ai of the internal edges become complex with a positive imaginary part. We omit
details.

For events, which are space-like separated, x + y + |w| � d((i, x), (j, y)) > |t − s| is
valid for any w ∈ Wij whenever i, j ∈ E . Also by lemma 2, the assumption 	 = ∅ implies
AB† � 0 which in turn implies that A(v)B(v)† � 0 holds for all vertices v by lemma 3. This
in turn implies that each S(v; k), which is of the form −(A(v) + ikB(v))−1(A(v) − ikB(v)),
has no poles and and hence is analytic in the upper half-plane and polynomially bounded
there, again by lemma 2. As a consequence each S(w; k)jl is analytic in the upper half-plane
and polynomially bounded. These considerations again allow us to make a deformation of the
integration over k in (B.8) from the real axis (−∞, +∞) to the parallel line (−∞+iρ, +∞+iρ).
Combining the estimate (B.5) with

|eik(x+y+|w|)| = e−Imk((x+y+|w|)

and the polynomial bound of each S(w; k)jl in the limit ρ → +∞, we obtain a vanishing
contribution. In other words, each summand in (B.8) vanishes. This concludes our discussion
of the case i, j ∈ E .

We turn to the case i ∈ I and j ∈ E and discuss the integral involving the α(k) and β(k)
amplitudes separately. By the walk expansion (2.74),∫ ∞

−∞

dk

2π
α(k)ij eik(x+y) sin(ω(k)(t − s))

ω(k)

=
∑

w∈W−
ij

∫ ∞

−∞

dk

2π
S(w; k)ij eik(x+|w|+y) sin(ω(k)(t − s))

ω(k)
(B.9)

and we observe that d((j, x), (l, y)) � x + |w| + y, holds for all w ∈ W−
j l , see (2.66). Hence

for space-like separation and for each summand we can again deform the integration contour
to (−∞ + iρ, +∞ + iρ) and thus this expression then vanishes when ρ → ∞. As for the term
containing the amplitude β(k), again the walk expansion gives∫ ∞

−∞

dk

2π
β(k)ij eik(−x+y) sin(ω(k)(t − s))

ω(k)

=
∑

w∈W+
ij

∫ ∞

−∞

dk

2π
S(w; k)ij eik(ai−x+|w|+y) sin(ω(k)(t − s))

ω(k)
. (B.10)

Now d((j, x), (l, y)) � ai −x + |w|+y holds for all w ∈ W+
ij , cf again (2.66), and the previous

arguments can again be applied.
In the case j, l ∈ I, the arguments just used do not work. This is the reason why we have

been unable to establish finite propagation speed inside the graph, that is in Gint. Indeed, now
the contour deformation into the upper k-half-plane cannot be carried out, since βĀ,B̄ (−k) will
have poles in the upper half-plane. Also the walk representation of βĀ,B̄ (−k) for k > 0 does
not have the form needed to invoke the arguments we have used so far.

Remark 46. The reason we had to impose the condition 	 = ∅ for a general graph is
that in the presence of bound states we do not (yet) have sufficient control over the matrix
valued functions S(k), α(k) and β(k) at the poles. Recall that in the single vertex case, we had
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proposition 26 at our disposal. However, we expect Einstein causality still to be valid without
this condition.
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